70,616 research outputs found
The Effects of Halo Assembly Bias on Self-Calibration in Galaxy Cluster Surveys
Self-calibration techniques for analyzing galaxy cluster counts utilize the
abundance and the clustering amplitude of dark matter halos. These properties
simultaneously constrain cosmological parameters and the cluster
observable-mass relation. It was recently discovered that the clustering
amplitude of halos depends not only on the halo mass, but also on various
secondary variables, such as the halo formation time and the concentration;
these dependences are collectively termed assembly bias. Applying modified
Fisher matrix formalism, we explore whether these secondary variables have a
significant impact on the study of dark energy properties using the
self-calibration technique in current (SDSS) and the near future (DES, SPT, and
LSST) cluster surveys. The impact of the secondary dependence is determined by
(1) the scatter in the observable-mass relation and (2) the correlation between
observable and secondary variables. We find that for optical surveys, the
secondary dependence does not significantly influence an SDSS-like survey;
however, it may affect a DES-like survey (given the high scatter currently
expected from optical clusters) and an LSST-like survey (even for low scatter
values and low correlations). For an SZ survey such as SPT, the impact of
secondary dependence is insignificant if the scatter is 20% or lower but can be
enhanced by the potential high scatter values introduced by a highly correlated
background. Accurate modeling of the assembly bias is necessary for cluster
self-calibration in the era of precision cosmology.Comment: 13 pages, 5 figures, replaced to match published versio
Can the Bump be Observed in the Early Afterglow of GRBS with X-Ray Line Emission Features?
Extremely powerful emission lines are observed in the X-ray afterglow of
several GRBs. The energy contained in the illuminating continuum which is
responsible for the line production exceeds 10 erg, much higher than
that of the collimated GRBs. It constrains the models which explain the
production of X-ray emission lines. In this paper, We argue that this energy
can come from a continuous postburst outflow. Focusing on a central engine of
highly magnetized millisecond pulsar or magnetar we find that afterglow can be
affected by the illuminating continuum, and therefore a distinct achromatic
bump may be observed in the early afterglow lightcurves. With the luminosity of
the continuous outflow which produces the line emission, we define the upper
limit of the time when the bump feature appears. We argue that the reason why
the achromatic bumps have not been detected so far is that the bumps should
appear at the time too early to be observed.Comment: 13 pags, 2 tables, appear in v603 n1 pt1 ApJ March 1, 2004 issu
Quantum asymmetric cryptography with symmetric keys
Based on quantum encryption, we present a new idea for quantum public-key
cryptography (QPKC) and construct a whole theoretical framework of a QPKC
system. We show that the quantum-mechanical nature renders it feasible and
reasonable to use symmetric keys in such a scheme, which is quite different
from that in conventional public-key cryptography. The security of our scheme
is analyzed and some features are discussed. Furthermore, the state-estimation
attack to a prior QPKC scheme is demonstrated.Comment: 8 pages, 1 figure, Revtex
A Simultaneous Quantum Secure Direct Communication Scheme between the Central Party and Other M Parties
We propose a simultaneous quantum secure direct communication scheme between
one party and other three parties via four-particle GHZ states and swapping
quantum entanglement. In the scheme, three spatially separated senders, Alice,
Bob and Charlie, transmit their secret messages to a remote receiver Diana by
performing a series local operations on their respective particles according to
the quadripartite stipulation. From Alice, Bob, Charlie and Diana's Bell
measurement results, Diana can infer the secret messages. If a perfect quantum
channel is used, the secret messages are faithfully transmitted from Alice, Bob
and Charlie to Diana via initially shared pairs of four-particle GHZ states
without revealing any information to a potential eavesdropper. As there is no
transmission of the qubits carrying the secret message in the public channel,
it is completely secure for the direct secret communication. This scheme can be
considered as a network of communication parties where each party wants to
communicate secretly with a central party or server.Comment: 4 pages, no figur
SOS-convex Semi-algebraic Programs and its Applications to Robust Optimization: A Tractable Class of Nonsmooth Convex Optimization
In this paper, we introduce a new class of nonsmooth convex functions called
SOS-convex semialgebraic functions extending the recently proposed notion of
SOS-convex polynomials. This class of nonsmooth convex functions covers many
common nonsmooth functions arising in the applications such as the Euclidean
norm, the maximum eigenvalue function and the least squares functions with
-regularization or elastic net regularization used in statistics and
compressed sensing. We show that, under commonly used strict feasibility
conditions, the optimal value and an optimal solution of SOS-convex
semi-algebraic programs can be found by solving a single semi-definite
programming problem (SDP). We achieve the results by using tools from
semi-algebraic geometry, convex-concave minimax theorem and a recently
established Jensen inequality type result for SOS-convex polynomials. As an
application, we outline how the derived results can be applied to show that
robust SOS-convex optimization problems under restricted spectrahedron data
uncertainty enjoy exact SDP relaxations. This extends the existing exact SDP
relaxation result for restricted ellipsoidal data uncertainty and answers the
open questions left in [Optimization Letters 9, 1-18(2015)] on how to recover a
robust solution from the semi-definite programming relaxation in this broader
setting
meson effects on neutron stars in the modified quark-meson coupling model
The properties of neutron stars are investigated by including meson
field in the Lagrangian density of modified quark-meson coupling model. The
population with meson is larger than that without
meson at the beginning, but it becomes smaller than that without meson
as the appearance of . The meson has opposite effects on
hadronic matter with or without hyperons: it softens the EOSes of hadronic
matter with hyperons, while it stiffens the EOSes of pure nucleonic matter.
Furthermore, the leptons and the hyperons have the similar influence on
meson effects. The meson increases the maximum masses of
neutron stars. The influence of on the meson effects
are also investigated.Comment: 10 pages, 6 figures, 4 table
Probabilistic teleportation of unknown two-particle state via POVM
We propose a scheme for probabilistic teleportation of unknown two-particle
state with partly entangled four-particle state via POVM. In this scheme the
teleportation of unknown two-particle state can be realized with certain
probability by performing two Bell state measurements, a proper POVM and a
unitary transformation.Comment: 5 pages, no figur
Deterministic secure direct communication using GHZ states and swapping quantum entanglement
We present a deterministic secure direct communication scheme via
entanglement swapping, where a set of ordered maximally entangled
three-particle states (GHZ states), initially shared by three spatially
separated parties, Alice, Bob and Charlie, functions as a quantum information
channel. After ensuring the safety of the quantum channel, Alice and Bob apply
a series local operations on their respective particles according to the
tripartite stipulation and the secret message they both want to send to
Charlie. By three Alice, Bob and Charlie's Bell measurement results, Charlie is
able to infer the secret messages directly. The secret messages are faithfully
transmitted from Alice and Bob to Charlie via initially shared pairs of GHZ
states without revealing any information to a potential eavesdropper. Since
there is not a transmission of the qubits carrying the secret message between
any two of them in the public channel, it is completely secure for direct
secret communication if perfect quantum channel is used.Comment: 9 pages, no figur
- …