62,746 research outputs found
In vitro and in vivo effects of salbutamol on neutrophil function in acute lung injury
Background: Intravenous salbutamol (albuterol) reduces lung water in patients with the acute respiratory
distress syndrome (ARDS). Experimental data show that it also reduces pulmonary neutrophil accumulation or
activation and inflammation in ARDS.
Aim: To investigate the effects of salbutamol on neutrophil function.
Methods: The in vitro effects of salbutamol on neutrophil function were determined. Blood and
bronchoalveolar lavage (BAL) fluid were collected from 35 patients with acute lung injury (ALI)/ARDS, 14
patients at risk from ARDS and 7 ventilated controls at baseline and after 4 daysā treatment with placebo or
salbutamol (ALI/ARDS group). Alveolarācapillary permeability was measured in vivo by thermodilution
(PiCCO). Neutrophil activation, adhesion molecule expression and inflammatory cytokines were measured.
Results: In vitro, physiological concentrations of salbutamol had no effect on neutrophil chemotaxis, viability
or apoptosis. Patients with ALI/ARDS showed increased neutrophil activation and adhesion molecule
expression compared with at risk-patients and ventilated controls. There were associations between alveolarā
capillary permeability and BAL myeloperoxidase (r = 0.4, p = 0.038) and BAL interleukin 8 (r = 0.38,
p = 0.033). In patients with ALI/ARDS, salbutamol increased numbers of circulating neutrophils but had no
effect on alveolar neutrophils.
Conclusion: At the onset of ALI/ARDS, there is increased neutrophil recruitment and activation. Physiological
concentrations of salbutamol did not alter neutrophil chemotaxis, viability or apoptosis in vitro. In vivo,
salbutamol increased circulating neutrophils, but had no effect on alveolar neutrophils or on neutrophil
activation. These data suggest that the beneficial effects of salbutamol in reducing lung water are unrelated to
modulation of neutrophil-dependent inflammatory pathways
Analytic description of atomic interaction at ultracold temperatures II: Scattering around a magnetic Feshbach resonance
Starting from a multichannel quantum-defect theory, we derive analytic
descriptions of a magnetic Feshbach resonance in an arbitrary partial wave ,
and the atomic interactions around it. An analytic formula, applicable to both
broad and narrow resonances of arbitrary , is presented for ultracold atomic
scattering around a Feshbach resonance. Other related issues addressed include
(a) the parametrization of a magnetic Feshbach resonance of arbitrary , (b)
rigorous definitions of "broad" and "narrow" resonances of arbitrary and
their different scattering characteristics, and (c) the tuning of the effective
range and the generalized effective range by a magnetic field.Comment: 13 pages, 4 figure
Consistency of shared reference frames should be reexamined
In a recent Letter [G. Chiribella et al., Phys. Rev. Lett. 98, 120501
(2007)], four protocols were proposed to secretly transmit a reference frame.
Here We point out that in these protocols an eavesdropper can change the
transmitted reference frame without being detected, which means the consistency
of the shared reference frames should be reexamined. The way to check the above
consistency is discussed. It is shown that this problem is quite different from
that in previous protocols of quantum cryptography.Comment: 3 pages, 1 figure, comments are welcom
Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys
This article is made available through the Brunel Open Access Publishing Fund. Copyright @ 2012 Elsevier B.V.This article has been made available through the Brunel Open Access Publishing Fund.AlāMgāSi based alloys can provide super ductility to satisfy the demands of thin wall castings in the application of automotive structure. In this work, the effect of iron on the microstructure and mechanical properties of the AlāMgāSi diecast alloys with different Mn concentrations is investigated. The CALPHAD (acronym of Calculation of Phase Diagrams) modelling with the thermodynamic properties of the multi-component AlāMgāSiāMnāFe and AlāMgāSiāFe systems is carried out to understand the role of alloying on the formation of different primary Fe-rich intermetallic compounds. The results showed that the Fe-rich intermetallic phases precipitate in two solidification stages in the high pressure die casting process: one is in the shot sleeve and the other is in the die cavity, resulting in the different morphologies and sizes. In the AlāMgāSiāMn alloys, the Fe-rich intermetallic phase formed in the shot sleeve exhibited coarse compact morphology and those formed in the die cavity were fine compact particles. Although with different morphologies, the compact intermetallics were identified as the same Ī±-AlFeMnSi phase with typical composition of Al24(Fe,Mn)6Si2. With increased Fe content, Ī²-AlFe was found in the microstructure with a long needle-shaped morphology, which was identified as Al13(Fe,Mn)4Si0.25. In the AlāMgāSi alloy, the identified Fe-rich intermetallics included the compact Ī±-AlFeSi phase with typical composition of Al8Fe2Si and the needle-shaped Ī²-AlFe phase with typical composition of Al13Fe4. Generally, the existence of iron in the alloy slightly increases the yield strength, but significantly reduces the elongation. The ultimate tensile strength maintains at similar levels when Fe contents is less than 0.5 wt%, but decreases significantly with the further increased Fe concentration in the alloys. CALPHAD modelling shows that the addition of Mn enlarges the Fe tolerance for the formation of Ī±-AlFeMnSi intermetallics and suppresses the formation of Ī²-AlFe phase in the AlāMgāSi alloys, and thus improves their mechanical properties.EPSRC and JL
Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys
This article is made available through the Brunel Open Access Publishing Fund. Copyright @ 2012 Elsevier B.V.This article has been made available through the Brunel Open Access Publishing Fund.AlāMgāSi based alloys can provide super ductility to satisfy the demands of thin wall castings in the application of automotive structure. In this work, the effect of iron on the microstructure and mechanical properties of the AlāMgāSi diecast alloys with different Mn concentrations is investigated. The CALPHAD (acronym of Calculation of Phase Diagrams) modelling with the thermodynamic properties of the multi-component AlāMgāSiāMnāFe and AlāMgāSiāFe systems is carried out to understand the role of alloying on the formation of different primary Fe-rich intermetallic compounds. The results showed that the Fe-rich intermetallic phases precipitate in two solidification stages in the high pressure die casting process: one is in the shot sleeve and the other is in the die cavity, resulting in the different morphologies and sizes. In the AlāMgāSiāMn alloys, the Fe-rich intermetallic phase formed in the shot sleeve exhibited coarse compact morphology and those formed in the die cavity were fine compact particles. Although with different morphologies, the compact intermetallics were identified as the same Ī±-AlFeMnSi phase with typical composition of Al24(Fe,Mn)6Si2. With increased Fe content, Ī²-AlFe was found in the microstructure with a long needle-shaped morphology, which was identified as Al13(Fe,Mn)4Si0.25. In the AlāMgāSi alloy, the identified Fe-rich intermetallics included the compact Ī±-AlFeSi phase with typical composition of Al8Fe2Si and the needle-shaped Ī²-AlFe phase with typical composition of Al13Fe4. Generally, the existence of iron in the alloy slightly increases the yield strength, but significantly reduces the elongation. The ultimate tensile strength maintains at similar levels when Fe contents is less than 0.5 wt%, but decreases significantly with the further increased Fe concentration in the alloys. CALPHAD modelling shows that the addition of Mn enlarges the Fe tolerance for the formation of Ī±-AlFeMnSi intermetallics and suppresses the formation of Ī²-AlFe phase in the AlāMgāSi alloys, and thus improves their mechanical properties.EPSRC and JL
Photoinduced Electron Pairing in a Driven Cavity
We demonstrate how virtual scattering of laser photons inside a cavity via two-photon processes can induce controllable long-range electron interactions in two-dimensional materials. We show that laser light that is red (blue) detuned from the cavity yields attractive (repulsive) interactions whose strength is proportional to the laser intensity. Furthermore, we find that the interactions are not screened effectively except at very low frequencies. For realistic cavity parameters, laser-induced heating of the electrons by inelastic photon scattering is suppressed and coherent electron interactions dominate. When the interactions are attractive, they cause an instability in the Cooper channel at a temperature proportional to the square root of the driving intensity. Our results provide a novel route for engineering electron interactions in a wide range of two-dimensional materials including AB-stacked bilayer graphene and the conducting interface between LaAlO3 and SrTiO3
The Growth in Size and Mass of Cluster Galaxies since z=2
We study the formation and evolution of Brightest Cluster Galaxies starting
from a population of quiescent ellipticals and following them to .
To this end, we use a suite of nine high-resolution dark matter-only
simulations of galaxy clusters in a CDM universe. We develop a scheme
in which simulation particles are weighted to generate realistic and
dynamically stable stellar density profiles at . Our initial conditions
assign a stellar mass to every identified dark halo as expected from abundance
matching; assuming there exists a one-to-one relation between the visible
properties of galaxies and their host haloes. We set the sizes of the luminous
components according to the observed relations for massive quiescent
galaxies. We study the evolution of the mass-size relation, the fate of
satellite galaxies and the mass aggregation of the cluster central. From ,
these galaxies grow on average in size by a factor 5 to 10 of and in mass by 2
to 3. The stellar mass growth rate of the simulated BCGs in our sample is of
1.9 in the range consistent with observations, and of 1.5 in the
range . Furthermore the satellite galaxies evolve to the present day
mass-size relation by . Assuming passively evolving stellar populations,
we present surface brightness profiles for our cluster centrals which resemble
those observed for the cDs in similar mass clusters both at and at .
This demonstrates that the CDM cosmology does indeed predict minor and
major mergers to occur in galaxy clusters with the frequency and mass ratio
distribution required to explain the observed growth in size of passive
galaxies since . Our experiment shows that Brightest Cluster Galaxies can
form through dissipationless mergers of quiescent massive galaxies,
without substantial additional star formation.Comment: submitted to MNRAS, 10 pages, 8 figures, 2 table
Multiscale Discriminant Saliency for Visual Attention
The bottom-up saliency, an early stage of humans' visual attention, can be
considered as a binary classification problem between center and surround
classes. Discriminant power of features for the classification is measured as
mutual information between features and two classes distribution. The estimated
discrepancy of two feature classes very much depends on considered scale
levels; then, multi-scale structure and discriminant power are integrated by
employing discrete wavelet features and Hidden markov tree (HMT). With wavelet
coefficients and Hidden Markov Tree parameters, quad-tree like label structures
are constructed and utilized in maximum a posterior probability (MAP) of hidden
class variables at corresponding dyadic sub-squares. Then, saliency value for
each dyadic square at each scale level is computed with discriminant power
principle and the MAP. Finally, across multiple scales is integrated the final
saliency map by an information maximization rule. Both standard quantitative
tools such as NSS, LCC, AUC and qualitative assessments are used for evaluating
the proposed multiscale discriminant saliency method (MDIS) against the
well-know information-based saliency method AIM on its Bruce Database wity
eye-tracking data. Simulation results are presented and analyzed to verify the
validity of MDIS as well as point out its disadvantages for further research
direction.Comment: 16 pages, ICCSA 2013 - BIOCA sessio
- ā¦