489 research outputs found

    Confocal microscopy of colloidal particles: towards reliable, optimum coordinates

    Full text link
    Over the last decade, the light microscope has become increasingly useful as a quantitative tool for studying colloidal systems. The ability to obtain particle coordinates in bulk samples from micrographs is particularly appealing. In this paper we review and extend methods for optimal image formation of colloidal samples, which is vital for particle coordinates of the highest accuracy, and for extracting the most reliable coordinates from these images. We discuss in depth the accuracy of the coordinates, which is sensitive to the details of the colloidal system and the imaging system. Moreover, this accuracy can vary between particles, particularly in dense systems. We introduce a previously unreported error estimate and use it to develop an iterative method for finding particle coordinates. This individual-particle accuracy assessment also allows comparison between particle locations obtained from different experiments. Though aimed primarily at confocal microscopy studies of colloidal systems, the methods outlined here should transfer readily to many other feature extraction problems, especially where features may overlap one another.Comment: Accepted by Advances in Colloid and Interface Scienc

    Promotion of exon 6 inclusion in HuD pre-mRNA by Hu protein family members

    Get PDF
    The Hu RNA-binding protein family consists of four members: HuR/A, HuB, HuC and HuD. HuR expression is widespread. The other three neuron-specific Hu proteins play an important role in neuronal differentiation through modulating multiple processes of RNA metabolism. In the splicing events examined previously, Hu proteins promote skipping of the alternative exons. Here, we report the first example where Hu proteins promote inclusion of an alternative exon, exon 6 of the HuD pre-mRNA. Sequence alignment analysis indicates the presence of several conserved AU-rich sequences both upstream and downstream to this alternatively spliced exon. We generated a human HuD exon 6 mini-gene reporter construct that includes these conserved sequences. Hu protein over-expression led to significantly increased exon 6 inclusion from this reporter and endogenous HuD. Studies using truncated and mutant HuD exon 6 reporters demonstrate that two AU-rich sequences located downstream of exon 6 are important. RNAi knockdown of Hu proteins decreased exon 6 inclusion. An in vitro splicing assay indicates that Hu proteins promote HuD exon 6 inclusion directly at the level of splicing. Our studies demonstrate that Hu proteins can function as splicing enhancers and expand the functional role of Hu proteins as splicing regulators

    Abstraction-Based Parameter Synthesis for Multiaffine Systems

    Get PDF
    International audienceMultiaffine hybrid automata (MHA) represent a powerful formalism to model complex dynamical systems. This formalism is particularly suited for the representation of biological systems which often exhibit highly non-linear behavior. In this paper, we consider the problem of parameter identification for MHA. We present an abstraction of MHA based on linear hybrid automata, which can be analyzed by the SpaceEx model checker. This abstraction enables a precise handling of time-dependent properties. We demonstrate the potential of our approach on a model of a genetic regulatory network and a myocyte model

    Evolutionary engineering reveals amino acid substitutions in Ato2 and Ato3 that allow improved growth of Saccharomyces cerevisiae on lactic acid

    Get PDF
    In Saccharomyces cerevisiae, the complete set of proteins involved in transport of lactic acid across the cell membrane has not been determined. In this study we aimed to identify transport proteins not previously described to be involved in lactic acid transport via a combination of directed evolution, whole-genome resequencing and reverse engineering. Evolution of a strain lacking all known lactic acid transporters on lactate led to the discovery of mutated Ato2 and Ato3 as two novel lactic acid transport proteins. When compared to previously identified S. cerevisiae genes involved in lactic acid transport, expression of ATO3T284C was able to facilitate the highest growth rate (0.15 ± 0.01 h-1) on this carbon source. A comparison between (evolved) sequences and 3D models of the transport proteins showed that most of the identified mutations resulted in a widening of the narrowest hydrophobic constriction of the anion channel. We hypothesize that this observation, sometimes in combination with an increased binding affinity of lactic acid to the sites adjacent to this constriction, are responsible for the improved lactic acid transport in the evolved proteins.BE-Basic R&D Program, which was granted an FES subsidy from the Dutch Ministry of Economic Affairs, Agriculture and Innovation (EL&I); the strategic programme UID/BIA/04050/2019 funded by Portuguese funds through the FCT I.P.; the projects: PTDC/BIAMIC/5184/2014, funded by national funds through the Fundac¸ao para a Ci ˜ encia ˆ e Tecnologia (FCT) I.P.; the European Regional Development Fund (ERDF) through the COMPETE 2020–Programa Operacional Competitividade e Internacionalizac¸ao (POCI); EcoAgriFood: Innova- ˜ tive green products and processes to promote AgriFood BioEconomy [grant number NORTE-01–0145-FEDER-000 009]; Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); and UMINHO/BD/25/2016 PhD grant by the Norte2020 [grant number NORTE-08–5369-FSE000 060] and a FEBS Short-Term Fellowship to MS

    A study of charged kappa in J/ψK±Ksππ0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0

    Full text link
    Based on 58×10658 \times 10^6 J/ψJ/\psi events collected by BESII, the decay J/ψK±Ksππ0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0 is studied. In the invariant mass spectrum recoiling against the charged K(892)±K^*(892)^{\pm}, the charged κ\kappa particle is found as a low mass enhancement. If a Breit-Wigner function of constant width is used to parameterize the kappa, its pole locates at (849±7714+18)i(256±4022+46)(849 \pm 77 ^{+18}_{-14}) -i (256 \pm 40 ^{+46}_{-22}) MeV/c2c^2. Also in this channel, the decay J/ψK(892)+K(892)J/\psi \to K^*(892)^+ K^*(892)^- is observed for the first time. Its branching ratio is (1.00±0.190.32+0.11)×103(1.00 \pm 0.19 ^{+0.11}_{-0.32}) \times 10^{-3}.Comment: 14 pages, 4 figure

    Predicting functional transcription factor binding through alignment-free and affinity-based analysis of orthologous promoter sequences

    Get PDF
    Motivation: The identification of transcription factor (TF) binding sites and the regulatory circuitry that they define is currently an area of intense research. Data from whole-genome chromatin immunoprecipitation (ChIP–chip), whole-genome expression microarrays, and sequencing of multiple closely related genomes have all proven useful. By and large, existing methods treat the interpretation of functional data as a classification problem (between bound and unbound DNA), and the analysis of comparative data as a problem of local alignment (to recover phylogenetic footprints of presumably functional elements). Both of these approaches suffer from the inability to model and detect low-affinity binding sites, which have recently been shown to be abundant and functional

    The Current Crisis in Emergency Care and the Impact on Disaster Preparedness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Homeland Security Act (HSA) of 2002 provided for the designation of a critical infrastructure protection program. This ultimately led to the designation of emergency services as a targeted critical infrastructure. In the context of an evolving crisis in hospital-based emergency care, the extent to which federal funding has addressed disaster preparedness will be examined.</p> <p>Discussion</p> <p>After 9/11, federal plans, procedures and benchmarks were mandated to assure a unified, comprehensive disaster response, ranging from local to federal activation of resources. Nevertheless, insufficient federal funding has contributed to a long-standing counter-trend which has eroded emergency medical care. The causes are complex and multifactorial, but they have converged to present a severely overburdened system that regularly exceeds emergency capacity and capabilities. This constant acute overcrowding, felt in communities all across the country, indicates a nation at risk. Federal funding has not sufficiently prioritized the improvements necessary for an emergency care infrastructure that is critical for an all hazards response to disaster and terrorist emergencies.</p> <p>Summary</p> <p>Currently, the nation is unable to meet presidential preparedness mandates for emergency and disaster care. Federal funding strategies must therefore be re-prioritized and targeted in a way that reasonably and consistently follows need.</p

    Towards Omni-Tomography—Grand Fusion of Multiple Modalities for Simultaneous Interior Tomography

    Get PDF
    We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose “omni-tomography”, a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality fusion: Software based image registration and hybrid scanners such as PET-CT, PET-MRI, and SPECT-CT among others. While there are intrinsic limitations with both approaches, the main obstacle to the seamless fusion of multiple imaging modalities has been the bulkiness of each individual imager and the conflict of their physical (especially spatial) requirements. To address this challenge, omni-tomography is now unveiled as an emerging direction for biomedical imaging and systems biomedicine

    Crystal Structures of Two Aminoglycoside Kinases Bound with a Eukaryotic Protein Kinase Inhibitor

    Get PDF
    Antibiotic resistance is recognized as a growing healthcare problem. To address this issue, one strategy is to thwart the causal mechanism using an adjuvant in partner with the antibiotic. Aminoglycosides are a class of clinically important antibiotics used for the treatment of serious infections. Their usefulness has been compromised predominantly due to drug inactivation by aminoglycoside-modifying enzymes, such as aminoglycoside phosphotransferases or kinases. These kinases are structurally homologous to eukaryotic Ser/Thr and Tyr protein kinases and it has been shown that some can be inhibited by select protein kinase inhibitors. The aminoglycoside kinase, APH(3′)-IIIa, can be inhibited by CKI-7, an ATP-competitive inhibitor for the casein kinase 1. We have determined that CKI-7 is also a moderate inhibitor for the atypical APH(9)-Ia. Here we present the crystal structures of CKI-7-bound APH(3′)-IIIa and APH(9)-Ia, the first structures of a eukaryotic protein kinase inhibitor in complex with bacterial kinases. CKI-7 binds to the nucleotide-binding pocket of the enzymes and its binding alters the conformation of the nucleotide-binding loop, the segment homologous to the glycine-rich loop in eurkaryotic protein kinases. Comparison of these structures with the CKI-7-bound casein kinase 1 reveals features in the binding pockets that are distinct in the bacterial kinases and could be exploited for the design of a bacterial kinase specific inhibitor. Our results provide evidence that an inhibitor for a subset of APHs can be developed in order to curtail resistance to aminoglycosides

    Systematic identification of yeast cell cycle transcription factors using multiple data sources

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eukaryotic cell cycle is a complex process and is precisely regulated at many levels. Many genes specific to the cell cycle are regulated transcriptionally and are expressed just before they are needed. To understand the cell cycle process, it is important to identify the cell cycle transcription factors (TFs) that regulate the expression of cell cycle-regulated genes.</p> <p>Results</p> <p>We developed a method to identify cell cycle TFs in yeast by integrating current ChIP-chip, mutant, transcription factor binding site (TFBS), and cell cycle gene expression data. We identified 17 cell cycle TFs, 12 of which are known cell cycle TFs, while the remaining five (Ash1, Rlm1, Ste12, Stp1, Tec1) are putative novel cell cycle TFs. For each cell cycle TF, we assigned specific cell cycle phases in which the TF functions and identified the time lag for the TF to exert regulatory effects on its target genes. We also identified 178 novel cell cycle-regulated genes, among which 59 have unknown functions, but they may now be annotated as cell cycle-regulated genes. Most of our predictions are supported by previous experimental or computational studies. Furthermore, a high confidence TF-gene regulatory matrix is derived as a byproduct of our method. Each TF-gene regulatory relationship in this matrix is supported by at least three data sources: gene expression, TFBS, and ChIP-chip or/and mutant data. We show that our method performs better than four existing methods for identifying yeast cell cycle TFs. Finally, an application of our method to different cell cycle gene expression datasets suggests that our method is robust.</p> <p>Conclusion</p> <p>Our method is effective for identifying yeast cell cycle TFs and cell cycle-regulated genes. Many of our predictions are validated by the literature. Our study shows that integrating multiple data sources is a powerful approach to studying complex biological systems.</p
    corecore