8 research outputs found
Identification of Cohesive Ends and Genes Encoding the Terminase of Phage 16-3
Cohesive ends of 16-3, a temperate phage of Rhizobium meliloti 41, have been identified as 10-base-long, 3′-protruding complementary G/C-rich sequences. terS and terL encode the two subunits of 16-3 terminase. Significant homologies were detected among the terminase subunits of phage 16-3 and other phages from various ecosystems
Internal Colonization of Salmonella enterica Serovar Typhimurium in Tomato Plants
Several Salmonella enterica outbreaks have been traced back to contaminated tomatoes. In this study, the internalization of S. enterica Typhimurium via tomato leaves was investigated as affected by surfactants and bacterial rdar morphotype, which was reported to be important for the environmental persistence and attachment of Salmonella to plants. Surfactants, especially Silwet L-77, promoted ingress and survival of S. enterica Typhimurium in tomato leaves. In each of two experiments, 84 tomato plants were inoculated two to four times before fruiting with GFP-labeled S. enterica Typhimurium strain MAE110 (with rdar morphotype) or MAE119 (without rdar). For each inoculation, single leaflets were dipped in 109 CFU/ml Salmonella suspension with Silwet L-77. Inoculated and adjacent leaflets were tested for Salmonella survival for 3 weeks after each inoculation. The surface and pulp of ripe fruits produced on these plants were also examined for Salmonella. Populations of both Salmonella strains in inoculated leaflets decreased during 2 weeks after inoculation but remained unchanged (at about 104 CFU/g) in week 3. Populations of MAE110 were significantly higher (P<0.05) than those of MAE119 from day 3 after inoculation. In the first year, nine fruits collected from one of the 42 MAE119 inoculated plants were positive for S. enterica Typhimurium. In the second year, Salmonella was detected in adjacent non-inoculated leaves of eight tomato plants (five inoculated with strain MAE110). The pulp of 12 fruits from two plants inoculated with MAE110 was Salmonella positive (about 106 CFU/g). Internalization was confirmed by fluorescence and confocal laser microscopy. For the first time, convincing evidence is presented that S. enterica can move inside tomato plants grown in natural field soil and colonize fruits at high levels without inducing any symptoms, except for a slight reduction in plant growth
Agricultural Practices Influence Salmonella Contamination and Survival in Pre-harvest Tomato Production
Between 2000 and 2010 the Eastern Shore of Virginia was implicated in four Salmonella outbreaks associated with tomato. Therefore, a multi-year study (2012–2015) was performed to investigate presumptive factors associated with the contamination of Salmonella within tomato fields at Virginia Tech’s Eastern Shore Agricultural Research and Extension Center. Factors including irrigation water sources (pond and well), type of soil amendment: fresh poultry litter (PL), PL ash, and a conventional fertilizer (triple superphosphate – TSP), and production practices: staked with plastic mulch (SP), staked without plastic mulch (SW), and non-staked without plastic mulch (NW), were evaluated by split-plot or complete-block design. All field experiments relied on naturally occurring Salmonella contamination, except one follow up experiment (worst-case scenario) which examined the potential for contamination in tomato fruits when Salmonella was applied through drip irrigation. Samples were collected from pond and well water; PL, PL ash, and TSP; and the rhizosphere, leaves, and fruits of tomato plants. Salmonella was quantified using a most probable number method and contamination ratios were calculated for each treatment. Salmonella serovar was determined by molecular serotyping. Salmonella populations varied significantly by year; however, similar trends were evident each year. Findings showed use of untreated pond water and raw PL amendment increased the likelihood of Salmonella detection in tomato plots. Salmonella Newport and Typhimurium were the most frequently detected serovars in pond water and PL amendment samples, respectively. Interestingly, while these factors increased the likelihood of Salmonella detection in tomato plots (rhizosphere and leaves), all tomato fruits sampled (n = 4800) from these plots were Salmonella negative. Contamination of tomato fruits was extremely low (< 1%) even when tomato plots were artificially inoculated with an attenuated Salmonella Newport strain (104 CFU/mL). Furthermore, Salmonella was not detected in tomato plots irrigated using well water and amended with PL ash or TSP. Production practices also influenced the likelihood of Salmonella detection in tomato plots. Salmonella detection was higher in tomato leaf samples for NW plots, compared to SP and SW plots. This study provides evidence that attention to agricultural inputs and production practices may help reduce the likelihood of Salmonella contamination in tomato fields
Cultivar was more influential than bacterial strain and other experimental factors in recovery of Escherichia coli O157:H7 populations from inoculated live Romaine lettuce plants
ABSTRACTThe varied choice of bacterial strain, plant cultivar, and method used to inoculate, retrieve, and enumerate Escherichia coli O157:H7 from live plants could affect comparability among studies evaluating lettuce–enterobacterial interactions. Cultivar, bacterial strain, incubation time, leaf side inoculated, and sample processing method were assessed for their influence in recovering and quantifying E. coli O157:H7 from live Romaine lettuce. Cultivar exerted the strongest effect on E. coli O157:H7 counts, which held up even when cultivar was considered in interactions with other factors. Recovery from the popularly grown green Romaine “Rio Bravo” was higher than from the red variety “Outredgeous.” Other modulating variables were incubation time, strain, and leaf side inoculated. Sample processing method was not significant. Incubation for 24 hours post-lettuce inoculation yielded greater counts than 48 hours, but was affected by lettuce cultivar, bacterial strain, and leaf side inoculated. Higher counts obtained for strain EDL933 compared to a lettuce outbreak strain 2705C emphasized the importance of selecting relevant strains for the system being studied. Inoculating the abaxial side of leaves gave higher counts than adaxial surface inoculation, although this factor interacted with strain and incubation period. Our findings highlight the importance of studying interactions between appropriate bacterial strains and plant cultivars for more relevant research results, and of standardizing inoculation and incubation procedures. The strong effect of cultivar exerted on the E. coli O157:H7-lettuce association supports the need to start reporting cultivar information for illness outbreaks to facilitate the identification and study of plant traits that impact food safety risk.IMPORTANCEThe contamination of Romaine lettuce with Escherichia coli O157:H7 has been linked to multiple foodborne disease outbreaks, but variability in the methods used to evaluate E. coli O157:H7 association with live lettuce plants complicates the comparability of different studies. In this study, various experimental variables and sample processing methods for recovering and quantifying E. coli O157:H7 from live Romaine lettuce were assessed. Cultivar was found to exert the strongest influence on E. coli O157:H7 retrieval from lettuce. Other modulating factors were bacterial incubation time on plants, strain, and leaf side inoculated, while sample processing method had no impact. Our findings highlight the importance of selecting relevant cultivars and strains, and of standardizing inoculation and incubation procedures, in these types of assessments. Moreover, results support the need to start reporting cultivars implicated in foodborne illness outbreaks to facilitate the identification and study of plant traits that impact food safety risk
Salmonella inactivation and cross-contamination on cherry and grape tomatoes under simulated wash conditions
Washing in chlorinated water is widely practiced for commercial fresh produce processing. While known as an effective tool for mitigating food safety risks, chlorine washing could also represent an opportunity for spreading microbial contaminations under sub-optimal operating conditions. This study evaluated Salmonella inactivation and cross-contamination in a simulated washing process of cherry and grape tomatoes. Commercially harvested tomatoes and the associated inedible plant matter (debris) were differentially inoculated with kanamycin resistant (KanR) or rifampin resistant (Rim) Salmonella strains, and washed together with uninoculated tomatoes in simulated packinghouse dump tank (flume) wash water. Washing in chlorinated water resulted in significantly higher Salmonella reduction on tomatoes than on debris, achieving 2-3 log reduction on tomatoes and about 1 log reduction on debris. Cross-contamination by Salmonella on tomatoes was significantly reduced in the presence of 25-150 mg/L free chlorine, although sporadic cross-contamination on tomatoes was detected when tomatoes and debris were inoculated at high population density. The majority of the sporadic cross-contaminations originated from Salmonella inoculated on debris. These findings suggested that debris could be a potentially significant source of contamination during commercial tomato washing