12 research outputs found

    Two-Dimensional Material-Reinforced Separator for Li–Sulfur Battery

    No full text
    Li–S batteries are heavily researched as they are capable of meeting the demands of electrification of transport systems, provided their inherent polysulfide shuttling can be prevented to enhance the cycle life. Although several approaches have been made to mitigate the shuttling effect, success is limited due to the poor adsorption capability of polysulfides on the cathode surface. Herein, we propose an efficient approach of using two-dimensional materials with permanent dipoles in the separator to inhibit mass transport of polysulfides from cathode and subsequent parasitic reactions on the metallic lithium anode. Two-compartment H-cell experiments coupled with spectroscopic studies, such as ultraviolet–visible absorption, nuclear magnetic resonance spectroscopy, and Fourier transform infrared spectroscopy, are used to demonstrate the interactions between the two-dimensional materials-modified separator and polysulfide species. Furthermore, electrochemical properties reveal the excellent specific capacity of 1210 mAh g<sup>–1</sup> and self-discharge studies suggest the feasibility of modified separator for commercial applications

    Mechanistic Study of Lithium-Ion Battery Cathode Recycling Using Deep Eutectic Solvents

    No full text
    The colossal increase in the use of Lithium-ion batteries (LiBs) necessitates their efficient recycling to ensure a steady supply of essential cathode materials, e.g., Li, Co, and Ni, as well as to tackle huge bulks of battery waste. Deep Eutectic Solvents (DESs) are green solvents with immense potential in the hydrometallurgical recycling of LiB cathodes, although their leaching mechanism has not been explored. We investigate the leaching mechanism of the different transition metals (TM), e.g., Co, Ni, and Li, from the most abundantly used LiB cathode materials NMC and NCA in an ethylene glycol (EG):choline chloride(ChCl) based DES. Leaching experiments performed by altering different parameters and density functional theory (DFT) calculations imply that EG participates in H-bonding and weakens the metal–oxygen bond of the TMs, whereas Cl– attacks the metal center to form chlorometalate complexes. Li on the other hand is surrounded by Cl– ions and leached in the solution. The increased concentration of ChCl in DES ensures the facile formation of these complexes and enhances leaching

    Mechanistic Study of Lithium-Ion Battery Cathode Recycling Using Deep Eutectic Solvents

    No full text
    The colossal increase in the use of Lithium-ion batteries (LiBs) necessitates their efficient recycling to ensure a steady supply of essential cathode materials, e.g., Li, Co, and Ni, as well as to tackle huge bulks of battery waste. Deep Eutectic Solvents (DESs) are green solvents with immense potential in the hydrometallurgical recycling of LiB cathodes, although their leaching mechanism has not been explored. We investigate the leaching mechanism of the different transition metals (TM), e.g., Co, Ni, and Li, from the most abundantly used LiB cathode materials NMC and NCA in an ethylene glycol (EG):choline chloride(ChCl) based DES. Leaching experiments performed by altering different parameters and density functional theory (DFT) calculations imply that EG participates in H-bonding and weakens the metal–oxygen bond of the TMs, whereas Cl– attacks the metal center to form chlorometalate complexes. Li on the other hand is surrounded by Cl– ions and leached in the solution. The increased concentration of ChCl in DES ensures the facile formation of these complexes and enhances leaching

    Mechanistic Study of Lithium-Ion Battery Cathode Recycling Using Deep Eutectic Solvents

    No full text
    The colossal increase in the use of Lithium-ion batteries (LiBs) necessitates their efficient recycling to ensure a steady supply of essential cathode materials, e.g., Li, Co, and Ni, as well as to tackle huge bulks of battery waste. Deep Eutectic Solvents (DESs) are green solvents with immense potential in the hydrometallurgical recycling of LiB cathodes, although their leaching mechanism has not been explored. We investigate the leaching mechanism of the different transition metals (TM), e.g., Co, Ni, and Li, from the most abundantly used LiB cathode materials NMC and NCA in an ethylene glycol (EG):choline chloride(ChCl) based DES. Leaching experiments performed by altering different parameters and density functional theory (DFT) calculations imply that EG participates in H-bonding and weakens the metal–oxygen bond of the TMs, whereas Cl– attacks the metal center to form chlorometalate complexes. Li on the other hand is surrounded by Cl– ions and leached in the solution. The increased concentration of ChCl in DES ensures the facile formation of these complexes and enhances leaching

    Mechanistic Study of Lithium-Ion Battery Cathode Recycling Using Deep Eutectic Solvents

    No full text
    The colossal increase in the use of Lithium-ion batteries (LiBs) necessitates their efficient recycling to ensure a steady supply of essential cathode materials, e.g., Li, Co, and Ni, as well as to tackle huge bulks of battery waste. Deep Eutectic Solvents (DESs) are green solvents with immense potential in the hydrometallurgical recycling of LiB cathodes, although their leaching mechanism has not been explored. We investigate the leaching mechanism of the different transition metals (TM), e.g., Co, Ni, and Li, from the most abundantly used LiB cathode materials NMC and NCA in an ethylene glycol (EG):choline chloride(ChCl) based DES. Leaching experiments performed by altering different parameters and density functional theory (DFT) calculations imply that EG participates in H-bonding and weakens the metal–oxygen bond of the TMs, whereas Cl– attacks the metal center to form chlorometalate complexes. Li on the other hand is surrounded by Cl– ions and leached in the solution. The increased concentration of ChCl in DES ensures the facile formation of these complexes and enhances leaching

    Mechanistic Study of Lithium-Ion Battery Cathode Recycling Using Deep Eutectic Solvents

    No full text
    The colossal increase in the use of Lithium-ion batteries (LiBs) necessitates their efficient recycling to ensure a steady supply of essential cathode materials, e.g., Li, Co, and Ni, as well as to tackle huge bulks of battery waste. Deep Eutectic Solvents (DESs) are green solvents with immense potential in the hydrometallurgical recycling of LiB cathodes, although their leaching mechanism has not been explored. We investigate the leaching mechanism of the different transition metals (TM), e.g., Co, Ni, and Li, from the most abundantly used LiB cathode materials NMC and NCA in an ethylene glycol (EG):choline chloride(ChCl) based DES. Leaching experiments performed by altering different parameters and density functional theory (DFT) calculations imply that EG participates in H-bonding and weakens the metal–oxygen bond of the TMs, whereas Cl– attacks the metal center to form chlorometalate complexes. Li on the other hand is surrounded by Cl– ions and leached in the solution. The increased concentration of ChCl in DES ensures the facile formation of these complexes and enhances leaching

    Mechanistic Study of Lithium-Ion Battery Cathode Recycling Using Deep Eutectic Solvents

    No full text
    The colossal increase in the use of Lithium-ion batteries (LiBs) necessitates their efficient recycling to ensure a steady supply of essential cathode materials, e.g., Li, Co, and Ni, as well as to tackle huge bulks of battery waste. Deep Eutectic Solvents (DESs) are green solvents with immense potential in the hydrometallurgical recycling of LiB cathodes, although their leaching mechanism has not been explored. We investigate the leaching mechanism of the different transition metals (TM), e.g., Co, Ni, and Li, from the most abundantly used LiB cathode materials NMC and NCA in an ethylene glycol (EG):choline chloride(ChCl) based DES. Leaching experiments performed by altering different parameters and density functional theory (DFT) calculations imply that EG participates in H-bonding and weakens the metal–oxygen bond of the TMs, whereas Cl– attacks the metal center to form chlorometalate complexes. Li on the other hand is surrounded by Cl– ions and leached in the solution. The increased concentration of ChCl in DES ensures the facile formation of these complexes and enhances leaching

    Mechanistic Study of Lithium-Ion Battery Cathode Recycling Using Deep Eutectic Solvents

    No full text
    The colossal increase in the use of Lithium-ion batteries (LiBs) necessitates their efficient recycling to ensure a steady supply of essential cathode materials, e.g., Li, Co, and Ni, as well as to tackle huge bulks of battery waste. Deep Eutectic Solvents (DESs) are green solvents with immense potential in the hydrometallurgical recycling of LiB cathodes, although their leaching mechanism has not been explored. We investigate the leaching mechanism of the different transition metals (TM), e.g., Co, Ni, and Li, from the most abundantly used LiB cathode materials NMC and NCA in an ethylene glycol (EG):choline chloride(ChCl) based DES. Leaching experiments performed by altering different parameters and density functional theory (DFT) calculations imply that EG participates in H-bonding and weakens the metal–oxygen bond of the TMs, whereas Cl– attacks the metal center to form chlorometalate complexes. Li on the other hand is surrounded by Cl– ions and leached in the solution. The increased concentration of ChCl in DES ensures the facile formation of these complexes and enhances leaching

    Mechanistic Study of Lithium-Ion Battery Cathode Recycling Using Deep Eutectic Solvents

    No full text
    The colossal increase in the use of Lithium-ion batteries (LiBs) necessitates their efficient recycling to ensure a steady supply of essential cathode materials, e.g., Li, Co, and Ni, as well as to tackle huge bulks of battery waste. Deep Eutectic Solvents (DESs) are green solvents with immense potential in the hydrometallurgical recycling of LiB cathodes, although their leaching mechanism has not been explored. We investigate the leaching mechanism of the different transition metals (TM), e.g., Co, Ni, and Li, from the most abundantly used LiB cathode materials NMC and NCA in an ethylene glycol (EG):choline chloride(ChCl) based DES. Leaching experiments performed by altering different parameters and density functional theory (DFT) calculations imply that EG participates in H-bonding and weakens the metal–oxygen bond of the TMs, whereas Cl– attacks the metal center to form chlorometalate complexes. Li on the other hand is surrounded by Cl– ions and leached in the solution. The increased concentration of ChCl in DES ensures the facile formation of these complexes and enhances leaching

    Mechanistic Study of Lithium-Ion Battery Cathode Recycling Using Deep Eutectic Solvents

    No full text
    The colossal increase in the use of Lithium-ion batteries (LiBs) necessitates their efficient recycling to ensure a steady supply of essential cathode materials, e.g., Li, Co, and Ni, as well as to tackle huge bulks of battery waste. Deep Eutectic Solvents (DESs) are green solvents with immense potential in the hydrometallurgical recycling of LiB cathodes, although their leaching mechanism has not been explored. We investigate the leaching mechanism of the different transition metals (TM), e.g., Co, Ni, and Li, from the most abundantly used LiB cathode materials NMC and NCA in an ethylene glycol (EG):choline chloride(ChCl) based DES. Leaching experiments performed by altering different parameters and density functional theory (DFT) calculations imply that EG participates in H-bonding and weakens the metal–oxygen bond of the TMs, whereas Cl– attacks the metal center to form chlorometalate complexes. Li on the other hand is surrounded by Cl– ions and leached in the solution. The increased concentration of ChCl in DES ensures the facile formation of these complexes and enhances leaching
    corecore