5,350 research outputs found

    VLT near-infrared spectra of hard serendipitous Chandra sources

    Full text link
    We present near-infrared long-slit spectra of eight optically-dim X-ray sources obtained with ISAAC on the Very Large Telescope. Six of the sources have hard X-ray emission with a significant fraction of the counts emerging above 2 keV. All were discovered serendipitously in the fields of three nearby galaxy clusters observed with Chandra, and identified through near-infrared imaging. The X-ray fluxes lie close to the break in the source counts. Two of the sources show narrow emission lines, and a third has a broad line. One of the narrow line-emitting sources has a clear redshift identification at z=2.18, while the other has a tentative determination based on the highest redshift detection of He I 10830 at z=1.26. The remainder have featureless spectra to deep limiting equivalent widths of 20--60 angstroms and line flux approx= 5 x 10^{-17} erg/s/cm^2 in the K-band. High-quality J, H and Ks--band images of the sources were combined with archival optical detections or limits to estimate a photometric redshift for six. Two sources show complex double morphology. The hard sources have spectral count ratios consistent with heavily obscured AGN, while the host galaxy emits much of the optical and near-infrared flux. The most likely explanation for the featureless continua is that the line photons are being scattered or destroyed by optically-thick gas and associated dust with large covering fractions.Comment: Replaced in response to problems with the PDF version of Fig 4 at arxiv.org, but not at the mirror sites (lanl.gov, soton.ac.uk). No content change

    Accretion disc-corona and jet emission from the radio-loud narrow-line Seyfert 1 galaxy RX J1633.3+4719

    Full text link
    We perform X-ray/ultraviolet (UV) spectral and X-ray variability studies of the radio-loud narrow-line Seyfert 1 (NLS1) galaxy RX J1633.3+4719 using XMM-Newton and Suzaku observations from 2011 and 2012. The 0.3-10 keV spectra consist of an ultrasoft component described by an accretion disc blackbody (kT_in = 39.6^{+11.2}_{-5.5} eV) and a power law due to the thermal Comptonization ({\Gamma} = 1.96^{+0.24}_{-0.31}) of the disc emission. The disc temperature inferred from the soft excess is at least a factor of 2 lower than that found for the canonical soft excess emission from radio-quiet NLS1s. The UV spectrum is described by a power law with photon index 3.05^{+0.56}_{-0.33}. The observed UV emission is too strong to arise from the accretion disc or the host galaxy, but can be attributed to a jet. The X-ray emission from RX J1633.3+4719 is variable with fractional variability amplitude FvarF_{\rm var}=13.5±1.0\pm1.0 per cent. In contrast to radio-quiet active galactic nuclei (AGN), X-ray emission from the source becomes harder with increasing flux. The fractional rms variability increases with energy and the rms spectrum is well described by a constant disc component and a variable power-law continuum with the normalization and photon index being anticorrelated. Such spectral variability cannot be caused by variations in the absorption and must be intrinsic to the hot corona. Our finding of possible evidence for emission from the inner accretion disc, jet and hot corona from RX J1633.3+4719 in the optical to X-ray bands makes this object an ideal target to probe the disc-jet connection in AGN.Comment: 12 pages, 11 figures, 3 tables, Published in MNRA

    The subarcsecond mid-infrared view of local active galactic nuclei: II. The mid-infrared--X-ray correlation

    Full text link
    We present an updated mid-infrared (MIR) versus X-ray correlation for the local active galactic nuclei (AGN) population based on the high angular resolution 12 and 18um continuum fluxes from the AGN subarcsecond MIR atlas and 2-10 keV and 14-195 keV data collected from the literature. We isolate a sample of 152 objects with reliable AGN nature and multi-epoch X-ray data and minimal MIR contribution from star formation. Although the sample is not homogeneous or complete, we show that our results are unlikely to be affected by biases. The MIR--X-ray correlation is nearly linear and within a factor of two independent of the AGN type and the wavebands used. The observed scatter is <0.4 dex. A possible flattening of the correlation slope at the highest luminosities probed (~ 10^45 erg/s) is indicated but not significant. Unobscured objects have, on average, an MIR--X-ray ratio that is only <= 0.15 dex higher than that of obscured objects. Objects with intermediate X-ray column densities (22 < log N_H < 23) actually show the highest MIR--X-ray ratio on average. Radio-loud objects show a higher mean MIR--X-ray ratio at low luminosities, while the ratio is lower than average at high luminosities. This may be explained by synchrotron emission from the jet contributing to the MIR at low-luminosities and additional X-ray emission at high luminosities. True Seyfert 2 candidates and double AGN do not show any deviation from the general behaviour. Finally, we show that the MIR--X-ray correlation can be used to verify the AGN nature of uncertain objects. Specifically, we give equations that allow to determine the intrinsic 2-10 keV luminosities and column densities for objects with complex X-ray properties to within 0.34 dex. These techniques are applied to the uncertain objects of the remaining AGN MIR atlas, demonstrating the usefulness of the MIR--X-ray correlation as an empirical tool.Comment: Accepted for publication in MNRAS, 40 pages, 25 figure

    An elevation of 0.1 light-seconds for the optical jet base in an accreting Galactic black hole system

    Get PDF
    Relativistic plasma jets are observed in many systems that host accreting black holes. According to theory, coiled magnetic fields close to the black hole accelerate and collimate the plasma, leading to a jet being launched. Isolating emission from this acceleration and collimation zone is key to measuring its size and understanding jet formation physics. But this is challenging because emission from the jet base cannot easily be disentangled from other accreting components. Here, we show that rapid optical flux variations from an accreting Galactic black-hole binary are delayed with respect to X-rays radiated from close to the black hole by about 0.1 seconds, and that this delayed signal appears together with a brightening radio jet. The origin of these subsecond optical variations has hitherto been controversial4. Not only does our work strongly support a jet origin for the optical variations but it also sets a characteristic elevation of ≲10^3 Schwarzschild radii for the main inner optical emission zone above the black hole, constraining both internal shock and magnetohydrodynamic models. Similarities with blazars suggest that jet structure and launching physics could potentially be unified under mass-invariant models. Two of the best-studied jetted black-hole binaries show very similar optical lags, so this size scale may be a defining feature of such systems

    A low-luminosity soft state in the short period black hole X-ray binary Swift J1753.5-0127

    Get PDF
    We present results from the spectral fitting of the candidate black hole X-ray binary Swift J1753.5-0127 in an accretion state previously unseen in this source. We fit the 0.7-78 keV spectrum with a number of models, however the preferred model is one of a multi-temperature disk with an inner disk temperature kTin=0.252±0.003\mathrm{k}T_\mathrm{in}=0.252\pm0.003 keV scattered into a steep power-law with photon index Γ=6.390.02+0.08\Gamma=6.39^{+0.08}_{-0.02} and an additional hard power law tail (Γ=1.79±0.02\Gamma=1.79\pm0.02). We report on the emergence of a strong disk-dominated component in the X-ray spectrum and we conclude that the source has entered the soft state for the first time in its ~10 year prolonged outburst. Using reasonable estimates for the distance to the source (33 kpc) and black hole mass (5M5M_{\odot}), we find the unabsorbed luminosity (0.1-100 keV) to be 0.60\approx0.60% of the Eddington luminosity, making this one of the lowest luminosity soft states recorded in X-ray binaries. We also find that the accretion disk extended towards the compact object during its transition from hard to soft, with the inner radius estimated to be Rin=28.00.4+0.7RgR_{\mathrm{in}}=28.0^{+0.7}_{-0.4} R_g or ~12Rg12R_g, dependent on the boundary condition chosen, assuming the above distance and mass, a spectral hardening factor f=1.7f=1.7 and a binary inclination i=55i=55^{\circ}.Comment: 10 pages, 5 figures, accepted for publication in MNRA

    Embedded AGN and star formation in the central 80 pc of IC 3639

    Full text link
    [Abridged] Methods: We use interferometric observations in the NN-band with VLTI/MIDI to resolve the mid-IR nucleus of IC 3639. The origin of the nuclear infrared emission is determined from: 1) the comparison of the correlated fluxes from VLTI/MIDI with the fluxes measured at subarcsec resolution (VLT/VISIR, VLT/ISAAC); 2) diagnostics based on IR fine-structure line ratios, the IR continuum emission, IR bands produced by polycyclic aromatic hydrocarbons (PAH) and silicates; and 3) the high-angular resolution spectral energy distribution. Results: The unresolved flux of IC 3639 is 90±20mJy90 \pm 20\, \rm{mJy} at 10.5μm10.5\, \rm{\mu m}, measured with three different baselines in VLTI (UT1-UT2, UT3-UT4, and UT2-UT3; 4646-58m58\, \rm{m}), making this the faintest measurement so far achieved with mid-IR interferometry. The correlated flux is a factor of 33-44 times fainter than the VLT/VISIR total flux measurement. The observations suggest that most of the mid-IR emission has its origin on spatial scales between 1010 and 80pc80\, \rm{pc} (4040-340mas340\, \rm{mas}). A composite scenario where the star formation component dominates over the AGN is favoured by the diagnostics based on ratios of IR fine-structure emission lines, the shape of the IR continuum, and the PAH and silicate bands. Conclusions: A composite AGN-starburst scenario is able to explain both the mid-IR brightness distribution and the IR spectral properties observed in the nucleus of IC 3639. The nuclear starburst would dominate the mid-IR emission and the ionisation of low-excitation lines (e.g. [NeII]12.8μm_{12.8 \rm{\mu m}}) with a net contribution of 70%\sim 70\%. The AGN accounts for the remaining 30%\sim 30\% of the mid-IR flux, ascribed to the unresolved component in the MIDI observations, and the ionisation of high-excitation lines (e.g. [NeV]14.3μm_{14.3 \rm{\mu m}} and [OIV]25.9μm_{25.9 \rm{\mu m}}).Comment: Accepted for publication in A&

    Diffraction-limited Subaru imaging of M82: sharp mid-infrared view of the starburst core

    Full text link
    We present new imaging at 12.81 and 11.7 microns of the central ~40"x30" (~0.7x0.5 kpc) of the starburst galaxy M82. The observations were carried out with the COMICS mid-infrared (mid-IR) imager on the 8.2m Subaru telescope, and are diffraction-limited at an angular resolution of <0".4. The images show extensive diffuse structures, including a 7"-long linear chimney-like feature and another resembling the edges of a ruptured bubble. This is the clearest view to date of the base of the kpc-scale dusty wind known in this galaxy. These structures do not extrapolate to a single central point, implying multiple ejection sites for the dust. In general, the distribution of dust probed in the mid-IR anticorrelates with the locations of massive star clusters that appear in the near-infrared. The 10-21 micron mid-IR emission, spatially-integrated over the field of view, may be represented by hot dust with temperature of ~160 K. Most discrete sources are found to have extended morphologies. Several radio HII regions are identified for the first time in the mid-IR. The only potential radio supernova remnant to have a mid-IR counterpart is a source which has previously also been suggested to be a weak active galactic nucleus. This source has an X-ray counterpart in Chandra data which appears prominently above 3 keV and is best described as a hot (~2.6 keV) absorbed thermal plasma with a 6.7 keV Fe K emission line, in addition to a weaker and cooler thermal component. The mid-IR detection is consistent with the presence of strong [NeII]12.81um line emission. The broad-band source properties are complex, but the X-ray spectra do not support the active galactic nucleus hypothesis. We discuss possible interpretations regarding the nature of this source.Comment: Accepted for publication in PASJ Subaru special issue. High resolution version available temporarily at http://www.astro.isas.jaxa.jp/~pgandhi/pgandhi_m82.pd

    Have we detected the most luminous ULX so far?

    Full text link
    We report the XMM-Newton detection of a moderately bright X-ray source superimposed on the outer arms of the inactive spiral galaxy MCG-03-34-63 (z=0.0213). It is clearly offset from the nucleus (by about 19'') but well within the D25 ellipse of the galaxy, just along its bar axis. The field has also been observed with the HST enabling us to compute a lower limit of > 94 on the X-ray to optical flux ratio which, together with the X-ray spectrum of the source, argues against a background AGN. On the other hand, the detection of excess X-ray absorption and the lack of a bright optical counterpart argue against foreground contamination. Short-timescale variability is observed, ruling out the hypothesis of a particularly powerful supernova. If it is associated with the apparent host galaxy, the source is the most powerful ULX detected so far with a peak luminosity of 1.35x10^41 erg/s in the 0.5-7 keV band. If confirmed by future multi-wavelength observations, the inferred bolometric luminosity (about 3x10^41 erg/s) requires a rather extreme beaming factor (larger than 115) to accommodate accretion onto a stellar-mass black hole of 20 solar masses and the source could represent instead one of the best intermediate-mass black hole candidate so far. If beaming is excluded, the Eddington limit implies a mass of >2300 solar masses for the accreting compact object.Comment: MNRAS Letters in press; minor correction at the end of Section

    Serendipitous discovery of an extended X-ray jet without a radio counterpart in a high-redshift quasar

    Full text link
    A recent Chandra observation of the nearby galaxy cluster Abell 585 has led to the discovery of an extended X-ray jet associated with the high-redshift background quasar B3 0727+409, a luminous radio source at redshift z=2.5. This is one of only few examples of high-redshift X-ray jets known to date. It has a clear extension of about 12", corresponding to a projected length of ~100 kpc, with a possible hot spot located 35" from the quasar. The archival high resolution VLA maps surprisingly reveal no extended jet emission, except for one knot about 1.4" from the quasar. The high X-ray to radio luminosity ratio for this source appears consistent with the (1+z)4\propto (1+z)^{4} amplification expected from the inverse Compton radiative model. This serendipitous discovery may signal the existence of an entire population of similar systems with bright X-ray and faint radio jets at high redshift, a selection bias which must be accounted for when drawing any conclusions about the redshift evolution of jet properties and indeed about the cosmological evolution of supermassive black holes and active galactic nuclei in general

    Prospecting Period Measurements with LSST - Low Mass X-ray Binaries as a Test Case

    Full text link
    The Large Synoptic Survey Telescope (LSST) will provide for unbiased sampling of variability properties of objects with rr mag << 24. This should allow for those objects whose variations reveal their orbital periods (PorbP_{orb}), such as low mass X-ray binaries (LMXBs) and related objects, to be examined in much greater detail and with uniform systematic sampling. However, the baseline LSST observing strategy has temporal sampling that is not optimised for such work in the Galaxy. Here we assess four candidate observing strategies for measurement of PorbP_{orb} in the range 10 minutes to 50 days. We simulate multi-filter quiescent LMXB lightcurves including ellipsoidal modulation and stochastic flaring, and then sample these using LSST's operations simulator (OpSim) over the (mag, PorbP_{orb}) parameter space, and over five sightlines sampling a range of possible reddening values. The percentage of simulated parameter space with correctly returned periods ranges from \sim23 %, for the current baseline strategy, to \sim70 % for the two simulated specialist strategies. Convolving these results with a PorbP_{orb} distribution, a modelled Galactic spatial distribution and reddening maps, we conservatively estimate that the most recent version of the LSST baseline strategy will allow PorbP_{orb} determination for \sim18 % of the Milky Way's LMXB population, whereas strategies that do not reduce observations of the Galactic Plane can improve this dramatically to \sim32 %. This increase would allow characterisation of the full binary population by breaking degeneracies between suggested PorbP_{orb} distributions in the literature. Our results can be used in the ongoing assessment of the effectiveness of various potential cadencing strategies.Comment: Replacement after addressing minor corrections from the referee - mainly improvements in clarificatio
    corecore