560 research outputs found

    Automatic Concept Discovery from Parallel Text and Visual Corpora

    Full text link
    Humans connect language and vision to perceive the world. How to build a similar connection for computers? One possible way is via visual concepts, which are text terms that relate to visually discriminative entities. We propose an automatic visual concept discovery algorithm using parallel text and visual corpora; it filters text terms based on the visual discriminative power of the associated images, and groups them into concepts using visual and semantic similarities. We illustrate the applications of the discovered concepts using bidirectional image and sentence retrieval task and image tagging task, and show that the discovered concepts not only outperform several large sets of manually selected concepts significantly, but also achieves the state-of-the-art performance in the retrieval task.Comment: To appear in ICCV 201

    Self-Supervised Audio-Visual Co-Segmentation

    Full text link
    Segmenting objects in images and separating sound sources in audio are challenging tasks, in part because traditional approaches require large amounts of labeled data. In this paper we develop a neural network model for visual object segmentation and sound source separation that learns from natural videos through self-supervision. The model is an extension of recently proposed work that maps image pixels to sounds. Here, we introduce a learning approach to disentangle concepts in the neural networks, and assign semantic categories to network feature channels to enable independent image segmentation and sound source separation after audio-visual training on videos. Our evaluations show that the disentangled model outperforms several baselines in semantic segmentation and sound source separation.Comment: Accepted to ICASSP 201

    Controllable Image-to-Video Translation: A Case Study on Facial Expression Generation

    Full text link
    The recent advances in deep learning have made it possible to generate photo-realistic images by using neural networks and even to extrapolate video frames from an input video clip. In this paper, for the sake of both furthering this exploration and our own interest in a realistic application, we study image-to-video translation and particularly focus on the videos of facial expressions. This problem challenges the deep neural networks by another temporal dimension comparing to the image-to-image translation. Moreover, its single input image fails most existing video generation methods that rely on recurrent models. We propose a user-controllable approach so as to generate video clips of various lengths from a single face image. The lengths and types of the expressions are controlled by users. To this end, we design a novel neural network architecture that can incorporate the user input into its skip connections and propose several improvements to the adversarial training method for the neural network. Experiments and user studies verify the effectiveness of our approach. Especially, we would like to highlight that even for the face images in the wild (downloaded from the Web and the authors' own photos), our model can generate high-quality facial expression videos of which about 50\% are labeled as real by Amazon Mechanical Turk workers.Comment: 10 page

    VQS: Linking Segmentations to Questions and Answers for Supervised Attention in VQA and Question-Focused Semantic Segmentation

    Full text link
    Rich and dense human labeled datasets are among the main enabling factors for the recent advance on vision-language understanding. Many seemingly distant annotations (e.g., semantic segmentation and visual question answering (VQA)) are inherently connected in that they reveal different levels and perspectives of human understandings about the same visual scenes --- and even the same set of images (e.g., of COCO). The popularity of COCO correlates those annotations and tasks. Explicitly linking them up may significantly benefit both individual tasks and the unified vision and language modeling. We present the preliminary work of linking the instance segmentations provided by COCO to the questions and answers (QAs) in the VQA dataset, and name the collected links visual questions and segmentation answers (VQS). They transfer human supervision between the previously separate tasks, offer more effective leverage to existing problems, and also open the door for new research problems and models. We study two applications of the VQS data in this paper: supervised attention for VQA and a novel question-focused semantic segmentation task. For the former, we obtain state-of-the-art results on the VQA real multiple-choice task by simply augmenting the multilayer perceptrons with some attention features that are learned using the segmentation-QA links as explicit supervision. To put the latter in perspective, we study two plausible methods and compare them to an oracle method assuming that the instance segmentations are given at the test stage.Comment: To appear on ICCV 201

    The Neuro-Symbolic Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision

    Full text link
    We propose the Neuro-Symbolic Concept Learner (NS-CL), a model that learns visual concepts, words, and semantic parsing of sentences without explicit supervision on any of them; instead, our model learns by simply looking at images and reading paired questions and answers. Our model builds an object-based scene representation and translates sentences into executable, symbolic programs. To bridge the learning of two modules, we use a neuro-symbolic reasoning module that executes these programs on the latent scene representation. Analogical to human concept learning, the perception module learns visual concepts based on the language description of the object being referred to. Meanwhile, the learned visual concepts facilitate learning new words and parsing new sentences. We use curriculum learning to guide the searching over the large compositional space of images and language. Extensive experiments demonstrate the accuracy and efficiency of our model on learning visual concepts, word representations, and semantic parsing of sentences. Further, our method allows easy generalization to new object attributes, compositions, language concepts, scenes and questions, and even new program domains. It also empowers applications including visual question answering and bidirectional image-text retrieval.Comment: ICLR 2019 (Oral). Project page: http://nscl.csail.mit.edu
    • …
    corecore