10 research outputs found

    Transcriptional analysis highlights three distinct immune profiles of high-risk oral epithelial dysplasia

    Get PDF
    Oral potentially malignant disorders (OPMD) are precursors of oral squamous cell carcinoma (OSCC), and the presence of oral epithelial dysplasia (OED) in OPMD confers an increased risk of malignant transformation. Emerging evidence has indicated a role for the immune system in OPMD disease progression; however, the underlying immune mechanisms remain elusive. In this study, we used immune signatures established from cancer to delineate the immune profiles of moderate and severe OED, which are considered high-risk OPMD. We demonstrated that moderate and severe OEDs exhibit high lymphocyte infiltration and upregulation of genes involved in both immune surveillance (major histocompatibility complex-I, T cells, B cells and cytolytic activity) and immune suppression (immune checkpoints, T regulatory cells, and tumor-associated macrophages). Notably, we identified three distinct subtypes of moderate and severe OED: immune cytotoxic, non-cytotoxic and non-immune reactive. Active immune surveillance is present in the immune cytotoxic subtype, whereas the non-cytotoxic subtype lacks CD8 immune cytotoxic response. The non-immune reactive subtype showed upregulation of genes involved in the stromal microenvironment and cell cycle. The lack of T cell infiltration and activation in the non-immune reactive subtype is due to the dysregulation of CTNNB1, PTEN and JAK2. This work suggests that moderate and severe OED that harbor the non-cytotoxic or non-immune reactive subtype are likely to progress to cancer. Overall, we showed that distinct immune responses are present in high-risk OPMD, and revealed targetable pathways that could lead to potential new approaches for non-surgical management of OED

    Expression of GNA12 and IFITM3, and their roles in oral carcinogenesis / Gan Chai Phei

    Get PDF
    Oral squamous cell carcinoma (OSCC) is a major health problem worldwide. The heterogeneity of the disease is the main challenge for the improvement of current treatment modalities. Efforts in our laboratory have focused on the molecular profiling of oral cancer in order to understand the mechanisms underlying this disease. Based on the previous microarray data, Guanine nucleotide binding protein alpha-12 (GNA12) and Interferon inducible transmembrane protein 3 (IFITM3) were identified to be up-regulated in oral cancer. Objectives: This study aims to validate the expression of GNA12 and IFITM3 at the mRNA and protein levels in oral cancer tissues and to determine the effects of their over-expression on the biology of oral cancer cells. Methodology: Real-time quantitative PCR (QPCR) was conducted for relative quantification of GNA12 and IFITM3 mRNA expression in 47 OSCC in comparison to 18 non-malignant oral tissues. GNA12 and IFITM3 protein expressions were accessed by immunohistochemistry (IHC) on tissue macro-arrays (TMaA) consisting of 44 tumours and 23 non-malignant tissues. Target molecules were exogenously expressed in oral cancer cell lines via virus-transduction, and further examined for in-vitro cell proliferation, migration and invasion to determine their functional roles in oral cancer. Results: In comparison to non-malignant tissues, OSCC tissues exhibited high mRNA levels of GNA12 (p<0.001) and IFITM3 (p=0.003). Over-expression of GNA12 was observed in 55% (n=26) OSCC tissues, and IFITM3 over-expression was found in 46% (n=21) OSCC tissues. Consistently, IHC analysis also detected high levels of GNA12 and IFITM3 protein expressions in 75% (n=33) and 79% (n=34) of OSCC, respectively. Their expression was primarily localized to the cytoplasm. Conversely, more than 80% of the non-malignant cells showed negative staining for GNA12 and IFITM3. Following this, the in-vitro functional studies showed that expression of activated GNA12 (GαQ231L) in oral cancer cell line markedly increased cell migration in monolayer wound healing assay (p<0.001) and invasion through matrigel barrier (p=0.015) but have no effect on cell proliferation. However, IFITM3-transformed oral cancer cells lost the ability to form confluent monolayer and showed inhibition of cell growth. Moreover, over-expression of IFITM3 significantly reduced oral cancer cells migration (p=0.019) and invasion (p=0.004). Conclusion: To the best of our knowledge, this is probably the first study that demonstrated the expression of GNA12 and IFITM3 at the mRNA and protein levels in oral cancer. Over-expression of GNA12 and IFITM3 are associated with oral cancer, since high levels of these genes were found to be present in a large proportion of Malaysia’s oral cancer patients. Expression of activated GNA12 induced oral cancer cell migration and invasion hence warrant further investigations in the in-vivo model to determine if it could be targeted for therapy to prevent the spread of oral cancer. Over-expression of IFITM3 has inhibitory effects on oral cancer cell growth, migration and invasion. Thus, its role as oncogene or anti-tumour gene remains unclear

    Zerumbone targets the CXCR4-RhoA and PI3K-mTOR signaling axis to reduce motility and proliferation of oral cancer cells

    No full text
    Background: The CXCR4-RhoA and PI3K-mTOR signaling pathways play crucial roles in the dissemination and tumorigenesis of oral squamous cell carcinoma (OSCC). Activation of these pathways have made them promising molecular targets in the treatment of OSCC. Zerumbone, a bioactive monocyclic sesquiterpene isolated from the rhizomes of tropical ginger, Zingiber zerumbet (L.) Roscoe ex Sm. has displayed promising anticancer properties with the ability to modulate multiple molecular targets involved in carcinogenesis. While the anticancer activities of zerumbone have been well explored across different types of cancer, the molecular mechanism of action of zerumbone in OSCC remains largely unknown. Purpose: Here, we investigated whether OSCC cells were sensitive towards zerumbone treatment and further determined the molecular pathways involved in the mechanism of action. Methods: Cytotoxicity, anti-proliferative, anti-migratory and anti-invasive effects of zerumbone were tested on a panel of OSCC cell lines. The mechanism of action of zerumbone was investigated by analysing the effects on the CXCR4-RhoA and PI3K-mTOR pathways by western blotting. Results: Our panel of OSCC cells was broadly sensitive towards zerumbone with IC50 values of less than 5 µM whereas normal keratinocyte cells were less responsive with IC50 values of more than 25 µM. Representative OSCC cells revealed that zerumbone inhibited OSCC proliferation and induced cell cycle arrest and apoptosis. In addition, zerumbone treatment inhibited migration and invasion of OSCC cells, with concurrent suppression of endogenous CXCR4 protein expression in a time and dose-dependent manner. RhoA-pull down assay showed reduction in the expression of RhoA-GTP, suggesting the inactivation of RhoA by zerumbone. In association with this, zerumbone also inhibited the PI3K-mTOR pathway through the inactivation of Akt and S6 proteins. Conclusion: We provide evidence that zerumbone could inhibit the activation of CXCR4-RhoA and PI3K-mTOR signaling pathways leading to the reduced cell viability of OSCC cells. Our results suggest that zerumbone is a promising phytoagent for development of new therapeutics for OSCC treatment

    Valproic acid: Growth inhibition of head and neck cancer by induction of terminal differentiation and senescence

    No full text
    Background There are limited studies on the effects of drugs that modulate epigenetic regulation for head and neck squamous cell carcinoma (HNSCC). This study determined the effect of valproic acid (VPA) on HNSCC

    The 4717C > G polymorphism in periplakin modulates sensitivity to EGFR inhibitors

    Get PDF
    Abstract The use of EGFR inhibitors on oral squamous cell carcinoma (OSCC) as monotherapy yielded modest clinical outcomes and therefore would benefit from biomarkers that could predict which patient subsets are likely to respond. Here, we determined the efficacy of erlotinib in OSCC cell lines, and by comparing sensitive and resistant lines to identify potential biomarkers. We focused on the 4717C > G polymorphism in periplakin (PPL) where the CC genotype was associated with erlotinib resistance. To validate this, erlotinib-resistant cell lines harbouring CC genotype were engineered to overexpress the GG genotype and vice versa. Isogenic cell lines were then studied for their response to erlotinib treatment. We demonstrated that overexpression of the GG genotype in erlotinib-resistant lines sensitized them to erlotinib and inhibition of AKT phosphorylation. Similarly, the expression of the CC genotype conferred resistance to erlotinib with a concomitant increase in AKT phosphorylation. We also demonstrated that cell lines with the CC genotype generally are more resistant to other EGFR inhibitors than those with the GG genotype. Overall, we showed that a specific polymorphism in the PPL gene could confer resistance to erlotinib and other EGFR inhibitors and further work to evaluate these as biomarkers of response is warranted

    Synergistic Growth Inhibition by Afatinib and Trametinib in Preclinical Oral Squamous Cell Carcinoma Models

    No full text
    Background: Given that aberrant activation of epidermal growth factor receptor family receptors (ErbB) is a common event in oral squamous cell carcinoma, and that high expression of these receptor proteins is often associated with poor prognosis, this rationalizes the approach of targeting ErbB signaling pathways to improve the survival of patients with oral squamous cell carcinoma. However, monotherapy with the ErbB blocker afatinib has shown limited survival benefits. Objectives: This study was performed to identify mechanisms of afatinib resistance and to explore potential afatinib-based combination treatments with other targeted inhibitors in oral squamous cell carcinoma. Methods: We determined the anti-proliferative effects of afatinib on a panel of oral squamous cell carcinoma cell lines using a crystal violet-growth inhibition assay, click-iT 5-ethynyl-2′-deoxyuridine staining, and cell-cycle analysis. Biochemical assays were performed to study the underlying mechanism of drug treatment as a single agent or in combination with the MEK inhibitor trametinib. We further evaluated and compared the anti-tumor effects of single agent and combined treatment by using oral squamous cell carcinoma xenograft models. Results: In this study, we showed that afatinib inhibited oral squamous cell carcinoma cell proliferation via cell-cycle arrest at the G0/G1 phase, and inhibited tumor growth in xenograft mouse models. Interestingly, we demonstrated reactivation of the mitogen-activated protein kinase (ERK1/2) pathway in vitro, which possibly reduced the effects of ErbB inhibition. Concomitant treatment of oral squamous cell carcinoma cells with afatinib and trametinib synergized the anti-tumor effects in oral squamous cell carcinoma-bearing mouse models. Conclusions: Our findings provide insight into the molecular mechanism of resistance to afatinib and support further clinical evaluation into the combination of afatinib and MEK inhibition in the treatment of oral squamous cell carcinoma. © 2019, Springer Nature Switzerland AG

    In vitro evaluation of dual-antigenic PV1 peptide vaccine in head and neck cancer patients

    No full text
    Peptide vaccines derived from tumour-associated antigens have been used as an immunotherapeutic approach to induce specific cytotoxic immune response against tumour. We previously identified that MAGED4B and FJX1 proteins are overexpressed in HNSCC patients; and further demonstrated that two HLA-A2-restricted 9–11 amino acid peptides derived from these proteins were able to induce anti-tumour immune responses in vitro independently using PBMCs isolated from these patients. In this study, we evaluated the immunogenicity and efficacy of a dual-antigenic peptide vaccine (PV1), comprised of MAGED4B and FJX1 peptides in HNSCC patients. We first demonstrated that 94.8% of HNSCC patients expressed MAGED4B and/or FJX1 by immunohistochemistry, suggesting that PV1 could benefit the majority of HNSCC patients. The presence of pre-existing MAGED4B and FJX1-specific T-cells was detected using a HLA-A2 dimer assay and efficacy of PV1 to induce T-cell to secrete cytotoxic cytokine was evaluated using ELISPOT assay. Pre-existing PV1-specific T-cells were detected in all patients. Notably, we demonstrated that patients’ T-cells were able to secrete cytotoxic cytokines upon exposure to target cells expressing the respective antigen post PV1 stimulation. Furthermore, patients with high expression of MAGED4B and FJX1 in their tumours were more responsive to PV1 stimulation, demonstrating the specificity of the PV1 peptide vaccine. Additionally, we also demonstrated the expression of MAGED4B and FJX1 in breast, lung, colon, prostate and rectal cancer suggesting the potential use of PV1 in these cancers. In summary, PV1 could be a good vaccine candidate for the treatment of HNSCC patients and other cancers expressing these antigens

    GENIPAC: A Genomic Information Portal for Head and Neck Cancer Cell Systems

    No full text
    Head and neck cancer (HNC)–derived cell lines represent fundamental models for studying the biological mechanisms underlying cancer development and precision therapies. However, mining the genomic information of HNC cells from available databases requires knowledge on bioinformatics and computational skill sets. Here, we developed a user-friendly web resource for exploring, visualizing, and analyzing genomics information of commonly used HNC cell lines. We populated the current version of GENIPAC with 44 HNC cell lines from 3 studies: ORL Series, OPC-22, and H Series. Specifically, the mRNA expressions for all the 3 studies were derived with RNA-seq. The copy number alterations analysis of ORL Series was performed on the Genome Wide Human Cytoscan HD array, while copy number alterations for OPC-22 were derived from whole exome sequencing. Mutations from ORL Series and H Series were derived from RNA-seq information, while OPC-22 was based on whole exome sequencing. All genomic information was preprocessed with customized scripts and underwent data validation and correction through data set validator tools provided by cBioPortal. The clinical and genomic information of 44 HNC cell lines are easily assessable in GENIPAC. The functional utility of GENIPAC was demonstrated with some of the genomic alterations that are commonly reported in HNC, such as TP53, EGFR, CCND1, and PIK3CA. We showed that these genomic alterations as reported in The Cancer Genome Atlas database were recapitulated in the HNC cell lines in GENIPAC. Importantly, genomic alterations within pathways could be simultaneously visualized. We developed GENIPAC to create access to genomic information on HNC cell lines. This cancer omics initiative will help the research community to accelerate better understanding of HNC and the development of new precision therapeutic options for HNC treatment. GENIPAC is freely available at http://genipac.cancerresearch.my/

    DNA Vaccines Targeting Novel Cancer-Associated Antigens Frequently Expressed in Head and Neck Cancer Enhance the Efficacy of Checkpoint Inhibitor

    No full text
    HPV-independent head and neck squamous cell carcinoma (HNSCC) is a common cancer globally. The overall response rate to anti-PD1 checkpoint inhibitors (CPIs) in HNSCC is ~16%. One major factor influencing the effectiveness of CPI is the level of tumor infiltrating T cells (TILs). Converting TILlow tumors to TILhigh tumors is thus critical to improve clinical outcome. Here we describe a novel DNA vaccines to facilitate the T-cell infiltration and control tumor growth. We evaluated the expression of target antigens and their respective immunogenicity in HNSCC patients. The efficacy of DNA vaccines targeting two novel antigens were evaluated with or without CPI using a syngeneic model. Most HNSCC patients (43/44) co-expressed MAGED4B and FJX1 and their respective tetramer-specific T cells were in the range of 0.06-0.12%. In a preclinical model, antigen-specific T cells were induced by DNA vaccines and increased T cell infiltration into the tumor, but not MDSC or regulatory T cells. The vaccines inhibited tumor growth and improved the outcome alone and upon combination with anti-PD1 and resulted in tumor clearance in approximately 75% of mice. Pre-existence of MAGED4B and FJX1-reactive T cells in HNSCC patients suggests that these widely expressed antigens are highly immunogenic and could be further expanded by vaccination. The DNA vaccines targeting these antigens induced robust T cell responses and with the anti-PD1 antibody conferring excellent tumor control. This opens up an opportunity for combination immunotherapy that might benefit a wider population of HNSCC patients in an antigen-specific manner
    corecore