76 research outputs found

    Implications of high temperature and elevated CO2on flowering time in plants

    Get PDF
    Citation: Jagadish, S. V. K., Bahuguna, R. N., Djanaguiraman, M., Gamuyao, R., Prasad, P. V. V., & Craufurd, P. Q. (2016). Implications of high temperature and elevated CO2on flowering time in plants. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00913Flowering is a crucial determinant for plant reproductive success and seed-set. Increasing temperature and elevated carbon-dioxide (e[CO2]) are key climate change factors that could affect plant fitness and flowering related events. Addressing the effect of these environmental factors on flowering events such as time of day of anthesis (TOA) and flowering time (duration from germination till flowering) is critical to understand the adaptation of plants/crops to changing climate and is the major aim of this review. Increasing ambient temperature is the major climatic factor that advances flowering time in crops and other plants, with a modest effect of e[CO2]. Integrated environmental stimuli such as photoperiod, temperature and e[CO2] regulating flowering time is discussed. The critical role of plant tissue temperature influencing TOA is highlighted and crop models need to substitute ambient air temperature with canopy or floral tissue temperature to improve predictions. A complex signaling network of flowering regulation with change in ambient temperature involving different transcription factors (PIF4, PIF5), flowering suppressors (HvODDSOC2, SVP, FLC) and autonomous pathway (FCA, FVE) genes, mainly from Arabidopsis, provides a promising avenue to improve our understanding of the dynamics of flowering time under changing climate. Elevated CO2mediated changes in tissue sugar status and a direct [CO2]-driven regulatory pathway involving a key flowering gene, MOTHER OF FT AND TFL1 (MFT), are emerging evidence for the role of e[CO2] in flowering time regulation. © 2016 Jagadish, Bahuguna, Djanaguiraman, Gamuyao, Prasad and Craufurd

    A PSTOL-like gene, TaPSTOL, controls a number of agronomically important traits in wheat

    Get PDF
    Background Phosphorus (P) is an essential macronutrient for plant growth, and is required in large quantities by elite varieties of crops to maintain yields. Approximately 70% of global cultivated land suffers from P deficiency, and it has recently been estimated that worldwide P resources will be exhausted by the end of this century, increasing the demand for crops more efficient in their P usage. A greater understanding of how plants are able to maintain yield with lower P inputs is, therefore, highly desirable to both breeders and farmers. Here, we clone the wheat (Triticum aestivum L.) homologue of the rice PSTOL gene (OsPSTOL), and characterize its role in phosphate nutrition plus other agronomically important traits. Results TaPSTOL is a single copy gene located on the short arm of chromosome 5A, encoding a putative kinase protein, and shares a high level of sequence similarity to OsPSTOL. We re-sequenced TaPSTOL from 24 different wheat accessions and (3) three T. durum varieties. No sequence differences were detected in 26 of the accessions, whereas two indels were identified in the promoter region of one of the durum wheats. We characterised the expression of TaPSTOL under different P concentrations and demonstrated that the promoter was induced in root tips and hairs under P limiting conditions. Overexpression and RNAi silencing of TaPSTOL in transgenic wheat lines showed that there was a significant effect upon root biomass, flowering time independent of P treatment, tiller number and seed yield, correlating with the expression of TaPSTOL. However this did not increase PUE as elevated P concentration in the grain did not correspond to increased yields. Conclusions Manipulation of TaPSTOL expression in wheat shows it is responsible for many of the previously described phenotypic advantages as OsPSTOL except yield. Furthermore, we show TaPSTOL contributes to additional agronomically important traits including flowering time and grain size. Analysis of TaPSTOL sequences from a broad selection of wheat varieties, encompassing 91% of the genetic diversity in UK bread wheat, showed that there is very little genetic variation in this gene, which would suggest that this locus may have been under high selection pressure

    QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems

    Get PDF
    A high-density SNP-based genetic linkage map was constructed and integrated with a previous map in the Tapidor x Ningyou7 (TNDH) Brassica napus population, giving a new map with a total of 2041 molecular markers and an average marker density which increased from 0.39 to 0.97 (0.82 SNP bin) per cM. Root and shoot traits were screened under low and ‘normal’ phosphate (Pi) supply using a ‘pouch and wick’ system, and had been screened previously in an agar based system. The P-efficient parent Ningyou7 had a shorter primary root length (PRL), greater lateral root density (LRD) and a greater shoot biomass than the P-inefficient parent Tapidor under both treatments and growth systems. Quantitative trait loci (QTL) analysis identified a total of 131 QTL, and QTL meta-analysis found four integrated QTL across the growth systems. Integration reduced the confidence interval by ~41%. QTL for root and shoot biomass were co-located on chromosome A3 and for lateral root emergence were co-located on chromosomes A4/C4 and C8/C9. There was a major QTL for LRD on chromosome C9 explaining ~18% of the phenotypic variation. QTL underlying an increased LRD may be a useful breeding target for P uptake efficiency in Brassica

    Molecular breeding for phosphorus-efficient rice

    No full text
    Published Online: 11 OCT 2013Rice is the main staple food for more than half of the world’s population and the main source of calories in most Asian and many African countries. Since many rice-dependent countries are poor, it is critically important to keep rice prices low and increase productivity to provide sufficient food for a growing population. However, a sustainable increase in rice production is possible only if nutrients removed with the harvest are replaced by application of either mineral fertilizers or manure. Since fertilizer costs are rising, depletion of soil nutrients is an increasing problem, especially in the developing world where most farmers do not have the resources to purchase sufficient fertilizer or do not have access to fertilizer. In addition, the majority of rainfed rice in Asia is produced on poor quality and problem soils that are often low in nutrients or have properties, such as low pH or high aluminum and iron, that render phosphorus (P) unavailable to plants. On those soils, very high fertilizer doses have to be applied to provide sufficient plant-available P. Given that currently known rock phosphate reserves, the source of P fertilizer, are limited it can be expected that P deficiency will aggravate and will increasingly limit productivity, especially in poor countries. One way to address this problem is to develop crops that are more efficient in acquiring P from the soil and applied fertilizer, or crops with higher internal P-use efficiency, that is, with higher biomass production per unit P. In this paper, we provide a brief comprehensive overview on P-related aspects of rice production and highlight the potential of molecular breeding approaches to improve P-efficiency. As an example, we describe the major quantitative trait locus Phosphorus uptake 1 ( Pup1 ), which confers tolerance of P deficiency.Sigrid Heuer, J.H. Chin, R. Gamuyao, S.M. Haefele, and M. Wissuw

    Development and application of gene-based markers for the major rice QTL Phosphorus uptake 1

    No full text
    Marker-assisted breeding is a very useful tool for breeders but still lags behind its potential because information on the effect of quantitative trait loci (QTLs) in different genetic backgrounds and ideal molecular markers are unavailable. Here, we report on some first steps toward the validation and application of the major rice QTL Phosphate uptake 1 (Pup1) that confers tolerance of phosphorus (P) deficiency in rice (Oryza sativa L.). Based on the Pup1 genomic sequence of the tolerant donor variety Kasalath that recently became available, markers were designed that target (1) putative genes that are partially conserved in the Nipponbare reference genome and (2) Kasalath-specific genes that are located in a large insertion-deletion (INDEL) region that is absent in Nipponbare. Testing these markers in 159 diverse rice accessions confirmed their diagnostic value across genotypes and showed that Pup1 is present in more than 50% of rice accessions adapted to stress-prone environments, whereas it was detected in only about 10% of the analyzed irrigated/lowland varieties. Furthermore, the Pup1 locus was detected in more than 80% of the analyzed drought-tolerant rice breeding lines, suggesting that breeders are unknowingly selecting for Pup1. A hydroponics experiment revealed genotypic differences in the response to P deficiency between upland and irrigated varieties but confirmed that root elongation is independent of Pup1. Contrasting Pup1 near-isogenic lines (NILs) were subsequently grown in two different P-deficient soils and environments. Under the applied aerobic growth conditions, NILs with the Pup1 locus maintained significantly higher grain weight plant−1 under P deprivation in comparison with intolerant sister lines without Pup1. Overall, the data provide evidence that Pup1 has the potential to improve yield in P-deficient and/or drought-prone environments and in diverse genetic backgrounds.Joong Hyoun Chin, Xiaochun Lu, Stephan M. Haefele, Rico Gamuyao, Abdelbagi Ismail, Matthias Wissuwa, Sigrid Heue
    • …
    corecore