152 research outputs found

    USING VOLCANIC MARINE CO2 VENTS TO STUDY THE EFFECTS OF OCEAN ACIDIFICATION ON BENTHIC BIOTA: HIGHLIGHTS FROM CASTELLO ARAGONESE D’ISCHIA (TYRRHENIAN SEA)

    Get PDF
    Current research into ocean acidification is mainly being carried out using short-term experiments whereby CO2 levels are manipulated in aquaria and enclosures. We have adopted a new approach in our studies of the effects of ocean acidification on Mediterranean marine biodiversity by using volcanic carbon dioxide vent systems as ‘natural laboratories’ as they cause long-term changes in seawater carbonate chemistry. A range of organisms, including macroalgae, seagrasses, invertebrates, and selected scleractinians and bryozoans have now been investigated in a shallow area located off the island of Ischia (Castello Aragonese, Tyrrhenian Sea, Italy). Our in situ observations give support to concerns, based on model predictions and short-term laboratory experiments, that ocean acidification will likely combine with other stressors (e.g., temperature rise) to cause a decrease in Mediterranean marine biodiversity and lead to shifts in ecosystem structure

    An in situ assessment of local adaptation in a calcifying polychaete from a shallow CO 2 vent system

    Get PDF
    Ocean acidification (OA) is likely to exert selective pressure on natural populations. Our ability to predict which marine species will adapt to OA and what underlies this adaptive potential is of high conservation and resource management priority. Using a naturally low-pH vent site in the Mediterranean Sea (Castello Aragonese, Ischia) mirroring projected future OA conditions, we carried out a reciprocal transplant experiment to investigate the relative importance of phenotypic plasticity and local adaptation in two populations of the sessile, calcifying polychaete Simplaria sp. (Annelida, Serpulidae, Spirorbinae): one residing in low pH and the other from a nearby ambient (i.e. high) pH site. We measured a suite of fitness-related traits (i.e. survival, reproductive output, maturation, population growth) and tube growth rates in laboratory-bred F2 generation individuals from both populations reciprocally transplanted back into both ambient and low-pH in situ habitats. Both populations showed lower expression in all traits, but increased tube growth rates, when exposed to low-pH compared with high-pH conditions, regardless of their site of origin suggesting that local adaptation to low-pH conditions has not occurred. We also found comparable levels of plasticity in the two populations investigated, suggesting no influence of long-term exposure to low pH on the ability of populations to adjust their phenotype. Despite high variation in trait values among sites and the relatively extreme conditions at the low pH site (pH < 7.36), response trends were consistent across traits. Hence, our data suggest that, for Simplaria and possibly other calcifiers, neither local adaptations nor sufficient phenotypic plasticity levels appear to suffice in order to compensate for the negative impacts of OA on long-term survival. Our work also emphasizes the utility of field experiments in natural environments subjected to high level of pCO2 for elucidating the potential for adaptation to future scenarios of OA

    Effects of ocean acidification on invertebrate settlement at volcanic CO<inf>2</inf> vents

    Get PDF
    We present the first study of the effects of ocean acidification on settlement of benthic invertebrates and microfauna. Artificial collectors were placed for 1 month along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy). Seventy-nine taxa were identified from six main taxonomic groups (foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths). Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves showed highly significant reductions in recruitment to the collectors as pCO2 rose from normal (336-341 ppm, pH 8.09-8.15) to high levels (886-5,148 ppm) causing acidified conditions near the vents (pH 7.08-7.79). Only the syllid polychaete Syllis prolifera had higher abundances at the most acidified station, although a wide range of polychaetes and small crustaceans was able to settle and survive under these conditions. A few taxa (Amphiglena mediterranea, Leptochelia dubia, Caprella acanthifera) were particularly abundant at stations acidified by intermediate amounts of CO2 (pH 7. 41-7.99). These results show that increased levels of CO2 can profoundly affect the settlement of a wide range of benthic organisms. © 2010 Springer-Verlag

    A comparison of life-history traits in calcifying Spirorbinae polychaetes living along natural pH gradients

    Get PDF
    © Inter-Research 2018. Low-pH vent systems are ideal natural laboratories to study the consequences of long-term low-pH exposure on marine species and thus identify life-history traits associated with low-pH tolerance. This knowledge can help to inform predictions on which types of species may be less vulnerable in future ocean acidification (OA) scenarios. Accordingly, we investigated how traits of calcifying polychaete species (Serpulidae, Spirorbinae) varied with pH using a functional trait analysis at 2 natural pH gradients around the Castello Aragonese islet off Ischia, Italy. We first observed the distribution and abundance patterns of all calcifying polychaete epiphytes in the canopy of Posidonia oceanica seagrass across these gradients. We then used laboratory trials to compare fecundity, settlement success, and juvenile survival in the dominant species from a control (Pileolaria militaris Claparède, 1870) and a low-pH site (Simplaria sp.). We found significantly higher reproductive output, juvenile settlement rates, and juvenile survival in Simplaria sp. individuals from the low-pH site, compared to P. militaris individuals from control pH sites, when observed in their respective in situ pH conditions. Our results suggest that tolerance to low pH may result, in part, from traits associated with successful reproduction and rapid settlement under low-pH conditions. This finding implies that other species with similar life-history traits may respond similarly, and should be targeted for future OA tolerance research

    Effects of seagrasses and algae of the Caulerpa family on hydrodynamics and particle-trapping rates

    Get PDF
    The widespread decline of seagrass beds within the Mediterranean often results in the replacement of seagrasses by opportunistic green algae of the Caulerpa family. Because Caulerpa beds have a different height, stiffness and density compared to seagrasses, these changes in habitat type modify the interaction of the seafloor with hydrodynamics, influencing key processes such as sediment resuspension and particle trapping. Here, we compare the effects on hydrodynamics and particle trapping of Caulerpa taxifolia, C. racemosa, and C. prolifera with the Mediterranean seagrasses Cymodocea nodosa and Posidonia oceanica. All macrophyte canopies reduced near-bed volumetric flow rates compared to bare sediment, vertical profiles of turbulent kinetic energy revealed peak values around the top of the canopies, and maximum values of Reynolds stress increased by a factor of between 1.4 (C. nodosa) and 324.1 (P. oceanica) when vegetation was present. All canopies enhanced particle retention rates compared to bare sediment. The experimental C. prolifera canopy was the most effective at particle retention (m2 habitat); however, C. racemosa had the largest particle retention capacity per structure surface area. Hence, in terms of enhancing particle trapping and reducing hydrodynamic forces at the sediment surface, Caulerpa beds provided a similar or enhanced function compared to P.oceanica and C. nodosa. However, strong seasonality in the leaf area index of C. racemosa and C. taxifolia within the Mediterranean, combined with a weak rhizome structure, suggests that sediments maybe unprotected during winter storms, when most erosion occurs. Hence, replacement of seagrass beds with Caulerpa is likely to have a major influence on annual sediment dynamics at ecosystem scales.This research was funded by the European Network of Excellence ‘‘Marine Biodiversity and Ecosystem Function’’ (MarBEF); FP6, EC contract no. 505446 and a grant from the Fundacio ´n BBVA. EPM was supported by a European Union Marie Curie host fellowship for transfer of knowledge, MTKD-CT-2004-509254, the Spanish national project EVAMARIA (CTM2005-00395/MAR) and the regional government of Andalusia project FUNDIV(P07-RNM-2516)

    Quantitative analysis of soft-bottom molluscs in the Bellingshausen Sea and around Peter I Island

    Get PDF
    Macrobenthic soft-bottom molluscs were sampled in 30 stations located in the Bellingshausen Sea at depths ranging from 90 to 3304 m. The samples were collected using a quantitative grab box-corer during the cruises BENTART 03, from 24 January to 3 March 2003, and BENTART 06, from 2 January to 16 February 2006. Molluscs represent 1074 specimens belonging to 62 species of Polyplacophora, Gastropoda, Bivalvia and Scaphopoda. The bivalve Cyamiocardium denticulatum was the most abundant species (448 specimens). The abundance per station varied between 1 and 446 specimens. The Shannon–Wiener diversity index ranged between one specimen and 2.36, the Pielou evenness index ranged between 0.00 and 1 and species richness ranged from 1 to 14 species. Diversity showed great variations at different stations. After multivariate analysis (cluster analysis and nonmetrical multidimensional scaling) based on Bray–Curtis similarities, we were able to separate two principal clusters. The first cluster groups together species from shallower bottoms near Peter I Island and the Antarctic Peninsula, and the second cluster groups together species from deeper bottoms in the Bellingshausen Sea. The combination of environmental variables with the highest correlations with faunistic data was that of depth and coarse sand at the surface.Publicado

    Wanted dead or alive : high diversity of macroinvertebrates associated with living and ’dead’ Posidonia oceanica matte

    Get PDF
    The Mediterranean endemic seagrass Posidonia oceanica forms beds characterised by a dense leaf canopy and a thick root-rhizome ‘matte’. Death of P. oceanica shoots leads to exposure of the underlying matte, which can persist for many years, and is termed ‘dead’ matte. Traditionally, dead matte has been regarded as a degraded habitat. To test whether this assumption was true, the motile macroinvertebrates of adjacent living (with shoots) and dead (without shoots) matte of P. oceanica were sampled in four different plots located at the same depth (5–6 m) in Mellieha Bay, Malta (central Mediterranean). The total number of species and abundance were significantly higher (ANOVA; P<0.05 and P<0.01, respectively) in the dead matte than in living P. oceanica matte, despite the presence of the foliar canopy in the latter. Multivariate analysis (MDS) clearly showed two main groups of assemblages, corresponding to the two matte types. The amphipods Leptocheirus guttatus and Maera grossimana, and the polychaete Nereis rava contributed most to the dissimilarity between the two different matte types. Several unique properties of the dead matte contributing to the unexpected higher number of species and abundance of motile macroinvertebrates associated with this habitat are discussed. The findings have important implications for the conservation of bare P. oceanica matte, which has been generally viewed as a habitat of low ecological value.peer-reviewe

    Positive Feedbacks in Seagrass Ecosystems – Evidence from Large-Scale Empirical Data

    Get PDF
    Positive feedbacks cause a nonlinear response of ecosystems to environmental change and may even cause bistability. Even though the importance of feedback mechanisms has been demonstrated for many types of ecosystems, their identification and quantification is still difficult. Here, we investigated whether positive feedbacks between seagrasses and light conditions are likely in seagrass ecosystems dominated by the temperate seagrass Zostera marina. We applied a combination of multiple linear regression and structural equation modeling (SEM) on a dataset containing 83 sites scattered across Western Europe. Results confirmed that a positive feedback between sediment conditions, light conditions and seagrass density is likely to exist in seagrass ecosystems. This feedback indicated that seagrasses are able to trap and stabilize suspended sediments, which in turn improves water clarity and seagrass growth conditions. Furthermore, our analyses demonstrated that effects of eutrophication on light conditions, as indicated by surface water total nitrogen, were on average at least as important as sediment conditions. This suggests that in general, eutrophication might be the most important factor controlling seagrasses in sheltered estuaries, while the seagrass-sediment-light feedback is a dominant mechanism in more exposed areas. Our study demonstrates the potentials of SEM to identify and quantify positive feedbacks mechanisms for ecosystems and other complex systems

    Insight into aquaculture's potential of marine annelid worms and ecological concerns: a review

    Get PDF
    Polychaetes are marine annelid worms that can contribute to aquaculture diversification. Its culture has been viable, and commercially attempted, but intensive production has progressed only in few countries around the world. In the countries with no production, marine polychaetes are imported or harvested. A strong and sustained research investment provided to a better understanding of the nutritional requirements and reproduction of some species. Recent studies showed new technical improvements, which can lead to an important progress in productivity and give a new impetus to the polychaete production. Some marine worm species were identified as good candidates for integrated multitrophic aquaculture. The development of cost-effective aquaculture techniques for marine annelid worms is essential to ensure a balance between commercial interests and the preservation of ecosystems. The influence of polychaete aquaculture on the environment and vice versa raise important concerns related to ecological security and sustainability of this activity. This review focus on the main technical improvements and advances that have been made in areas as diverse as: aquaculture potential of polychaetes, reared species, main species used worldwide, and highlights biological and ecological concerns, important challenges and recommendations.This study was supported by the FCT (Portuguese National Board of Scientific Research), through the MARE (Marine and Environmental Sciences Centre) (UID/MAR/04292/2013) strategic programme and through strategic project PEst-OE/MAR/UI0199/2014, granted to MARE. This study has also the financial support of PROMAR Program through the project 31-03-05-FEP42: LIVE BAIT – Annelid polychaetes as live bait in Portugal: harvesting, import and rearing management.info:eu-repo/semantics/publishedVersio

    Positive Feedbacks in Seagrass Ecosystems – Evidence from Large-Scale Empirical Data

    Get PDF
    Positive feedbacks cause a nonlinear response of ecosystems to environmental change and may even cause bistability. Even though the importance of feedback mechanisms has been demonstrated for many types of ecosystems, their identification and quantification is still difficult. Here, we investigated whether positive feedbacks between seagrasses and light conditions are likely in seagrass ecosystems dominated by the temperate seagrass Zostera marina. We applied a combination of multiple linear regression and structural equation modeling (SEM) on a dataset containing 83 sites scattered across Western Europe. Results confirmed that a positive feedback between sediment conditions, light conditions and seagrass density is likely to exist in seagrass ecosystems. This feedback indicated that seagrasses are able to trap and stabilize suspended sediments, which in turn improves water clarity and seagrass growth conditions. Furthermore, our analyses demonstrated that effects of eutrophication on light conditions, as indicated by surface water total nitrogen, were on average at least as important as sediment conditions. This suggests that in general, eutrophication might be the most important factor controlling seagrasses in sheltered estuaries, while the seagrass-sediment-light feedback is a dominant mechanism in more exposed areas. Our study demonstrates the potentials of SEM to identify and quantify positive feedbacks mechanisms for ecosystems and other complex systems
    corecore