82 research outputs found
Theoretical calculations of pressure broadening coefficients for H2O perturbed by hydrogen or helium gas
Halfwidths were calculated for H2O with H2 as a broadening gas and were estimated for He as the broadening species. The calculations used the model of Robert and Bonamy with parabolic trajectories and all relevant terms in the interaction potential. The calculations investigated the dependence of the halfwidth on the order of the atom-atom expansion, the rotational states, and the temperature in the range 200 to 400K. Finally, calculations were performed for many transitions of interest in the 5 micrometer window region of the spectrum. The resulting data will be supplied to Dr. R. Freedman for extracting accurate water mixing ratios from the analysis of the thermal channels for the Net Flux experiment on the Galileo probe
An intercomparison of measured pressure-broadening, pressure shifting parameters of carbon dioxide and their temperature dependence
International audienceAn intercomparison of measured pressure-broadening and pressure-shifting coefficients for carbon dioxide absorption lines was done. The work focuses on collision systems where a significant number of data can be found (CO2-N2, CO2-O2, CO2-air, and CO2-CO2) and yield information important to applications related to Earth's atmosphere. The literature was searched for measured line shape parameter data for the collision systems mentioned above. Databases were created for each perturbing gas with the ro-vibrational transition as the key. Using these databases intercomparisons of the measurements of half-widths, their temperature dependence, and line shifts were made. The data allow the investigations of trends in the data with respect to the vibrational and the rotational quantum numbers, various line shape models, and isotopologue effects
ExoMol line lists – LIV. Empirical line lists for AlH and AlD and experimental emission spectroscopy of AlD in A1Π (v = 0, 1, 2)
New ExoMol line lists AloHa for aluminium hydride (AlH and AlD) are presented improving the previous line lists WYLLoT. The revision is motivated by the recent experimental measurements and astrophysical findings involving the highly excited rotational states of AlH in its A ¹Π − X ¹Σ⁺ system. A new high-resolution emission spectrum of 10 bands from the A ¹Π − X ¹Σ⁺ system of AlD, in the region 17 300–32 000 cm⁻¹ was recorded with a Fourier transform spectrometer, which probes the predissociative A ¹Π v = 2 state. The AlD new line positions are combined with all available experimental data on AlH and AlD to construct a comprehensive set of empirical rovibronic energies of AlH and AlD covering the X ¹Σ⁺ and A ¹Π electronic states using the MARVEL approach. We then refine the spectroscopic model WYLLoT to our experimentally derived energies using the nuclear-motion code DUO and use this fit to produce improved line lists for ²⁷AlH, ²⁷AlD, and ²⁶AlH with a better coverage of the rotationally excited states of A ¹Π in the predissociative energy region. The lifetimes of the predissociative states are estimated and are included in the line list using the new ExoMol data structure, alongside the temperature-dependent continuum contribution to the photoabsorption spectra of AlH. The new line lists are shown to reproduce the experimental spectra of both AlH and AlD well, and to describe the AlH absorption in the recently reported Proxima Cen spectrum, including the strong predissociative line broadening. The line lists are included into the ExoMol data base www.exomol.com
The impact of spectral line wing cut-off : recommended standard method with application to MAESTRO opacity data base
KLC acknowledges funding from STFC under project number ST/V000861/1.When computing cross-sections from a line list, the result depends not only on the line strength, but also the line shape, pressure-broadening parameters, and line wing cut-off (i.e. the maximum distance calculated from each line centre). Pressure-broadening can be described using the Lorentz line shape, but it is known to not represent the true absorption in the far wings. Both theory and experiment have shown that far from the line centre, non-Lorentzian behaviour controls the shape of the wings and the Lorentz line shape fails to accurately characterize the absorption, leading to an underestimation or overestimation of the opacity continuum depending on the molecular species involved. The line wing cut-off is an often overlooked parameter when calculating absorption cross-sections, but can have a significant effect on the appearance of the spectrum since it dictates the extent of the line wing that contributes to the calculation either side of every line centre. Therefore, when used to analyse exoplanet and brown dwarf spectra, an inaccurate choice for the line wing cut-off can result in errors in the opacity continuum, which propagate into the modelled transit spectra, and ultimately impact/bias the interpretation of observational spectra, and the derived composition and thermal structure. Here, we examine the different methods commonly utilized to calculate the wing cut-off and propose a standard practice procedure (i.e. absolute value of 25 cm−1 for P ≤ 200 bar and 100 cm−1 for P > 200 bar) to generate molecular opacities which will be used by the open-access MAESTRO (Molecules and Atoms in Exoplanet Science: Tools and Resources for Opacities) data base. The pressing need for new measurements and theoretical studies of the far-wings is highlighted.Publisher PDFPeer reviewe
The impact of spectral line wing cut-off: recommended standard method with application to MAESTRO opacity data base
When computing cross-sections from a line list, the result depends not only on the line strength, but also the line shape, pressure-broadening parameters, and line wing cut-off (i.e. the maximum distance calculated from each line centre). Pressure-broadening can be described using the Lorentz line shape, but it is known to not represent the true absorption in the far wings. Both theory and experiment have shown that far from the line centre, non-Lorentzian behaviour controls the shape of the wings and the Lorentz line shape fails to accurately characterize the absorption, leading to an underestimation or overestimation of the opacity continuum depending on the molecular species involved. The line wing cut-off is an often overlooked parameter when calculating absorption cross-sections, but can have a significant effect on the appearance of the spectrum since it dictates the extent of the line wing that contributes to the calculation either side of every line centre. Therefore, when used to analyse exoplanet and brown dwarf spectra, an inaccurate choice for the line wing cut-off can result in errors in the opacity continuum, which propagate into the modelled transit spectra, and ultimately impact/bias the interpretation of observational spectra, and the derived composition and thermal structure. Here, we examine the different methods commonly utilized to calculate the wing cut-off and propose a standard practice procedure (i.e. absolute value of 25 cm−1 for P ≤ 200 bar and 100 cm−1 for P > 200 bar) to generate molecular opacities which will be used by the open-access MAESTRO (Molecules and Atoms in Exoplanet Science: Tools and Resources for Opacities) data base. The pressing need for new measurements and theoretical studies of the far-wings is highlighted
IUPAC Critical Evaluation of the Rotational-Vibrational Spectra of Water Vapor, Part III: Energy Levels and Transition Wavenumbers for H216O
This is the third of a series of articles reporting critically evaluated rotational-vibrational line positions, transition intensities, and energy levels, with associated critically reviewed labels and uncertainties, for all the main isotopologues of water. This paper presents experimental line positions, experimental-quality energy levels, and validated labels for rotational-vibrational transitions of the most abundant isotopologue of water, H216O. The latest version of the MARVEL (Measured Active Rotational-Vibrational Energy Levels) line-inversion procedure is used to determine the rovibrational energy levels of the electronic ground state of H216O from experimentally measured lines, together with their self-consistent uncertainties, for the spectral region up to the first dissociation limit. The spectroscopic network of H216O contains two components, an ortho (o) and a para (p) one. For o-H216O and p-H216O, experimentally measured, assigned, and labeled transitions were analyzed from more than 100 sources. The measured lines come from one-photon spectra recorded at room temperature in absorption, from hot samples with temperatures up to 3000K recorded in emission, and from multiresonance excitation spectra which sample levels up to dissociation. The total number of transitions considered is 184667 of which 182156 are validated: 68027 between para states and 114129 ortho ones. These transitions give rise to 18486 validated energy levels, of which 10446 and 8040 belong to o-H216O and p-H216O, respectively. The energy levels, including their labeling with approximate normal-mode and rigid-rotor quantum numbers, have been checked against ones determined from accurate variational nuclear motion computations employing exact kinetic energy operators as well as against previous compilations of energy levels. The extensive list of MARVEL lines and levels obtained are deposited in the supplementary data of this paper, as well as in a distributed information system applied to water, W@DIS, where they can easily be retrieved
Recommended isolated-line profile for representing high-resolution spectroscopic transitions (IUPAC Technical Report)
The report of an IUPAC Task Group, formed in 2011 on "Intensities and line
shapes in high-resolution spectra of water isotopologues from experiment and
theory" (Project No. 2011-022-2-100), on line profiles of isolated
high-resolution rotational-vibrational transitions perturbed by neutral
gas-phase molecules is presented. The well-documented inadequacies of the Voigt
profile (VP), used almost universally by databases and radiative-transfer
codes, to represent pressure effects and Doppler broadening in isolated
vibrational-rotational and pure rotational transitions of the water molecule
have resulted in the development of a variety of alternative line-profile
models. These models capture more of the physics of the influence of pressure
on line shapes but, in general, at the price of greater complexity. The Task
Group recommends that the partially Correlated quadratic-Speed-Dependent
Hard-Collision profile should be adopted as the appropriate model for
high-resolution spectroscopy. For simplicity this should be called the
Hartmann--Tran profile (HTP). The HTP is sophisticated enough to capture the
various collisional contributions to the isolated line shape, can be computed
in a straightforward and rapid manner, and reduces to simpler profiles,
including the Voigt profile, under certain simplifying assumptions.Comment: Accepted for publication in Pure and Applied Chemistr
Recommended Isolated-Line Profile for Representing High-Resolution Spectroscopic Transitions (IUPAC Technical Report)
The report of an IUPAC Task Group, formed in 2011 on Intensities and line shapes in high-resolution spectra of water isotopologues from experiment and theory (Project No. 2011-022-2-100), on line profiles of isolated high-resolution rotational-vibrational transitions perturbed by neutral gas-phase molecules is presented. The well-documented inadequacies of the Voigt profile (VP), used almost universally by databases and radiative-transfer codes, to represent pressure effects and Doppler broadening in isolated vibrational-rotational and pure rotational transitions of the water molecule have resulted in the development of a variety alternative line-profile models. These models capture more of the physics of the influence of pressure on line shapes but, in general, at the price of greater complexity. The Task Group recommends that the partially Correlated quadratic-Speed-Dependent Hard-Collision profile (pCqSD-HCP) should be adopted as the appropriate model for high-resolution spectroscopy. For simplicity this should be called the Hartmann-Tran profile (HTP). The HTP is sophisticated enough to capture the various collisional contributions to the isolated line shape, can be computed in a straightforward and rapid manner, and reduces to simpler profiles, including the Voigt profile, under certain simplifying assumptions. © 2014 IUPAC & De Gruyte
The Public Repository of Xenografts enables discovery and randomized phase II-like trials in mice
More than 90% of drugs with preclinical activity fail in human trials, largely due to insufficient efficacy. We hypothesized that adequately powered trials of patient-derived xenografts (PDX) in mice could efficiently define therapeutic activity across heterogeneous tumors. To address this hypothesis, we established a large, publicly available repository of well-characterized leukemia and lymphoma PDXs that undergo orthotopic engraftment, called the Public Repository of Xenografts (PRoXe). PRoXe includes all de-identified information relevant to the primary specimens and the PDXs derived from them. Using this repository, we demonstrate that large studies of acute leukemia PDXs that mimic human randomized clinical trials can characterize drug efficacy and generate transcriptional, functional, and proteomic biomarkers in both treatment-naive and relapsed/refractory disease
Effects of observed and experimental climate change on terrestrial ecosystems in northern Canada: results from the Canadian IPY program
Published VersionTundra and taiga ecosystems comprise nearly 40 % of the terrestrial landscapes of Canada. These permafrost ecosystems have supported humans for more than 4500 years, and are currently home to ca. 115,000 people, the majority of whom are First Nations, Inuit and Métis. The responses of these ecosystems to the regional warming over the past 30–50 years were the focus of four Canadian IPY projects. Northern residents and researchers reported changes in climate and weather patterns and noted shifts in vegetation and other environmental variables. In forest-tundra areas tree growth and reproductive effort correlated with temperature, but seedling establishment was often hindered by other factors resulting in sitespecific responses. Increased shrub cover has occurred in sites across the Arctic at the plot and landscape scale, and this was supported by results from experimental warming. Experimental warming increased vegetation cover and nutrient availability in most tundra soils; however, resistance to warming was also found. Soil microbial diversity in tundra was no different than in other biomes, although there were shifts in mycorrhizal diversity in warming experiments. All sites measured were sinks for carbon during the growing season with expected seasonal and latitudinal patterns. Modeled responses of a mesic tundra system to climate change showed that the sink status will likely continue for the next 50–100 years, after which these tundra systems will likely become a net source of carbon dioxide to the atmosphere. These IPY studies were the first comprehensive assessment of the state and change in Canadian northern terrestrial ecosystems and showed that the inherent variability in these systems is reflected in their site-specific responses to changes in climate. They also showed the importance of using local traditional knowledge and science, and provided extensive data sets, sites and researchers needed to study and manage the inevitable changes
in the Canadian North
- …