424 research outputs found

    Integrating phenotypes and endotypes in chronic rhinosinusitis: a combined clinical and experimental approach.

    Get PDF
    Chronic rhinosinusitis (CRS) represents a hot and debated topic in rhinology because of its high prevalence, heterogeneity of clinical manifestations and unpredictability of disease course. The quite recent dichotomic classification of CRS with and without nasal polyps has proved to be too simplistic to fully explain CRS manifestations and the underlying pathogenetic mechanisms. Being either the same phenotype expression of substantially different pathogenic mechanisms or different phenotypes the expression of the same mechanism, a one-size-fit-all therapeutic approach turned out to be insufficient in a non-negligible proportion of patients. Moreover, considering the attempt of giving a classification cut at a biomolecular level, a diagnostic and prognostic approach exclusively limited to subjective and objective clinical parameters is inevitably failing in many ways. However, to date no other more effective markers are available to monitor the trend of the disease. The fact of dealing with an apparently very frequent pathology responsible for a strong discomfort on the QoL and a substantial economic impact requires a diagnostic and therapeutic appropriateness for an adequate allocation of resources within the standards of precision medicine. The development of systems for a uniform archiving and sharing of the experiences of each rhinological center would enhance the efforts of the scientific community in defining integrated and targeted care pathways. The present thesis reports the results and the practical implications of three different experimental studies about the implementation of data storage and sharing systems, methods of analysis of therapeutic outcomes and inflammatory biomarkers in CRS

    Impaired coronary blood flow at higher heart rates during atrial fibrillation: investigation via multiscale modelling

    Get PDF
    Background. Different mechanisms have been proposed to relate atrial fibrillation (AF) and coronary flow impairment, even in absence of relevant coronary artery disease (CAD). However, the underlying hemodynamics remains unclear. Aim of the present work is to computationally explore whether and to what extent ventricular rate during AF affects the coronary perfusion. Methods. AF is simulated at different ventricular rates (50, 70, 90, 110, 130 bpm) through a 0D-1D multiscale validated model, which combines the left heart-arterial tree together with the coronary circulation. Artificially-built RR stochastic extraction mimics the \emph{in vivo} beating features. All the hemodynamic parameters computed are based on the left anterior descending (LAD) artery and account for the waveform, amplitude and perfusion of the coronary blood flow. Results. Alterations of the coronary hemodynamics are found to be associated either to the heart rate increase, which strongly modifies waveform and amplitude of the LAD flow rate, and to the beat-to-beat variability. The latter is overall amplified in the coronary circulation as HR grows, even though the input RR variability is kept constant at all HRs. Conclusions. Higher ventricular rate during AF exerts an overall coronary blood flow impairment and imbalance of the myocardial oxygen supply-demand ratio. The combined increase of heart rate and higher AF-induced hemodynamic variability lead to a coronary perfusion impairment exceeding 90-110 bpm in AF. Moreover, it is found that coronary perfusion pressure (CPP) is no longer a good measure of the myocardial perfusion for HR higher than 90 bpm.Comment: 8 pages, 5 figures, 3 table

    Cardiovascular deconditioning during long-term spaceflight through multiscale modeling

    Get PDF
    Human spaceflight has been fascinating man for centuries, representing the intangible need to explore the unknown, challenge new frontiers, advance technology and push scientific boundaries further. A key area of importance is cardiovascular deconditioning, that is, the collection of hemodynamic changes - from blood volume shift and reduction to altered cardiac function - induced by sustained presence in microgravity. A thorough grasp of the 0G adjustment point per se is important from a physiological viewpoint and fundamental for astronauts' safety and physical capability on long spaceflights. However, hemodynamic details of cardiovascular deconditioning are incomplete, inconsistent and poorly measured to date; thus a computational approach can be quite valuable. We present a validated 1D-0D multiscale model to study the cardiovascular response to long-term 0G spaceflight in comparison to the 1G supine reference condition. Cardiac work, oxygen consumption and contractility indexes, as well as central mean and pulse pressures were reduced, augmenting the cardiac deconditioning scenario. Exercise tolerance of a spaceflight traveler was found to be comparable to an untrained person with a sedentary lifestyle. At the capillary-venous level significant waveform alterations were observed which can modify the regular perfusion and average nutrient supply at the cellular level. The present study suggests special attention should be paid to future long spaceflights which demand prompt physical capacity at the time of restoration of partial gravity (e.g., Moon/Mars landing). Since spaceflight deconditioning has features similar to accelerated aging understanding deconditioning mechanisms in microgravity are also relevant to the understanding of aging physiology on Earth.Comment: 14 pages, 5 tables, 5 figure

    A multi-scale mathematical model of the cardiovascular system for investigation of cardiac arrhythmias

    Get PDF

    Nitrogen and energy partitioning in two genetic groups of pigs fed low-protein diets at 130 kg body weight

    Get PDF
    The aim was to evaluate the effect of low-protein (LP) or low-amino acid diets on digestibility, energy and nitrogen (N) utilisation in 2 genetic groups (GG) of pigs (129±11 kg BW). Duroc×Large White (A) pigs were chosen to represent a traditional GG for ham production, and Danbred Duroc (D) pigs to represent a GG with fast growing rate and high carcass lean yield. Dietary treatments: a conventional diet (CONV) containing 13.2% CP, and two LP diets, one with LP (10.4%) and low essential AA (LP1), the second with LP (9.7%) and high essential AA (LP2). Compared to CONV, LP2 had the same essential AA content per unit feed, while LP1 the same essential AA content per unit CP. Feed was restricted (DMI=6.8% BW0.75). Four consecutive digestibility/balances periods were conducted with 24 barrows, 12 A and 12 D. Metabolic cages and respiration chambers were used. No significant difference between diets was registered for digestibility. Nitrogen excreted: 41.3, 33.4 and 29.0 g/d (P=0.009), for CONV, LP1 and LP2 diets, respectively. Nitrogen retention was similar between the diets. Heat production (HP) was the lowest for LP diets. There was a tendency (P=0.079) for a lower energy digestibility in D group. The D pigs also had a higher HP and hence a lower retained energy in comparison with the A pigs. In conclusion: it is possible to reduce N excretion using very LP diets and LP-low AA diets; Danbred GG have a higher heat production and a lower energy retention than A pigs

    Oncogenic Alternative Splicing Switches: Role in Cancer Progression and Prospects for Therapy

    Get PDF
    Alterations in the abundance or activities of alternative splicing regulators generate alternatively spliced variants that contribute to multiple aspects of tumor establishment, progression and resistance to therapeutic treatments. Notably, many cancer-associated genes are regulated through alternative splicing suggesting a significant role of this post-transcriptional regulatory mechanism in the production of oncogenes and tumor suppressors. Thus, the study of alternative splicing in cancer might provide a better understanding of the malignant transformation and identify novel pathways that are uniquely relevant to tumorigenesis. Understanding the molecular underpinnings of cancer-associated alternative splicing isoforms will not only help to explain many fundamental hallmarks of cancer, but will also offer unprecedented opportunities to improve the efficacy of anti-cancer treatments
    • …
    corecore