4,240 research outputs found
The nuclear environment of the NLS1 Mrk 335: obscuration of the X-ray line emission by a variable outflow
We present XMM–Newton, NuSTAR, Swift, and Hubble Space Telescope observations of the Narrow-line Seyfert 1 galaxy Mrk 335 in a protracted low state in 2018 and 2019. The X-ray flux is at the lowest level so far observed, and the extremely low continuum flux reveals a host of soft X-ray emission lines from photoionized gas. The simultaneous UV flux drop suggests that the variability is intrinsic to the source, and we confirm this with broad-band X-ray spectroscopy. The dominance of the soft X-ray lines at low energies and distant reflection at high energies, is therefore due to the respective emission regions being located far enough from the X-ray source that they have not yet seen the flux drop. Between the two XMM–Newton spectra, taken 6 months apart, the emission line ratio in the O VII triplet changes drastically. We attribute this change to a drop in the ionization of intervening warm absorption, which means that the absorber must cover a large fraction of the line emitting region, and extend much further from the black hole than previously assumed. The HST spectrum, taken in 2018, shows that new absorption features have appeared on the blue wings of C III*, Ly α, N V, Si IV, and C IV, likely due to absorbing gas cooling in response to the low flux state
Long XMM observation of the Narrow-Line Seyfert 1 galaxy IRAS13224-3809: rapid variability, high spin and a soft lag
Results are presented from a 500ks long XMM-Newton observation of the
Narrow-Line Seyfert 1 galaxy IRAS13224-3809. The source is rapidly variable on
timescales down to a few 100s. The spectrum shows strong broad Fe-K and L
emission features which are interpreted as arising from reflection from the
inner parts of an accretion disc around a rapidly spinning black hole. Assuming
a power-law emissivity for the reflected flux and that the innermost radius
corresponds to the innermost stable circular orbit, the black hole spin is
measured to be 0.988 with a statistical precision better than one per cent.
Systematic uncertainties are discussed. A soft X-ray lag of 100s confirms this
scenario. The bulk of the power-law continuum source is located at a radius of
2-3 gravitational radii.Comment: 7 pages, 14 figures, submitted to MNRA
The NuSTAR spectrum of Mrk 335: extreme relativistic effects within two gravitational radii of the event horizon?
We present 3–50 keV NuSTAR observations of the active galactic nuclei Mrk 335 in a very low flux state. The spectrum is dominated by very strong features at the energies of the iron line at 5–7 keV and Compton hump from 10–30 keV. The source is variable during the observation, with the variability concentrated at low energies, which suggesting either a relativistic reflection or a variable absorption scenario. In this work, we focus on the reflection interpretation, making use of new relativistic reflection models that self consistently calculate the reflection fraction, relativistic blurring and angle-dependent reflection spectrum for different coronal heights to model the spectra. We find that the spectra can be well fitted with relativistic reflection, and that the lowest flux state spectrum is described by reflection alone, suggesting the effects of extreme light-bending occurring within ∼2 gravitational radii (R_G) of the event horizon. The reflection fraction decreases sharply with increasing flux, consistent with a point source moving up to above 10 R_G as the source brightens. We constrain the spin parameter to greater than 0.9 at the 3σ confidence level. By adding a spin-dependent upper limit on the reflection fraction to our models, we demonstrate that this can be a powerful way of constraining the spin parameter, particularly in reflection dominated states. We also calculate a detailed emissivity profile for the iron line, and find that it closely matches theoretical predictions for a compact source within a few R_G of the black hole
The 1.5 Ms observing campaign on IRAS 13224−3809 – I. X-ray spectral analysis
We present a detailed spectral analysis of the recent 1.5 Ms XMM–Newton observing campaign on the narrow-line Seyfert 1 galaxy IRAS 13224−3809, taken simultaneously with 500 ks of NuSTAR data. The X-ray light curve shows three flux peaks, registering at about 100 times the minimum flux seen during the campaign, and rapid variability with a time-scale of kiloseconds. The spectra are well fit with a primary power-law continuum, two relativistic-blurred reflection components from the inner accretion disc with very high iron abundance, and a simple blackbody-shaped model for the remaining soft excess. The spectral variability is dominated by the power-law continuum from a corona region within a few gravitational radii from the black hole. Additionally, blueshifted Ne X, Mg XII, Si XIV, and S XVI absorption lines are identified in the stacked low-flux spectrum, confirming the presence of a highly ionized outflow with velocity up to v = 0.267 and 0.225 c. We fit the absorption features with xstar models and find a relatively constant velocity outflow through the whole observation. Finally, we replace the bbody and supersolar abundance reflection models by fitting the soft excess successfully with the extended reflection model relxillD, which allows for higher densities than the standard relxill model. This returns a disc electron density n_e > 10^(18.7) cm^(−3) and lowers the iron abundance from Z_(Fe) = 24^(+3)_(−4)Z_⊙ with n-e = 10^(15) cm^(-3) to Z_(Fe) = 6.6^(+0.8)_(-2.1)Z_⊙
The nuclear environment of the NLS1 Mrk 335: obscuration of the X-ray line emission by a variable outflow
We present XMM–Newton, NuSTAR, Swift, and Hubble Space Telescope observations of the Narrow-line Seyfert 1 galaxy Mrk 335 in a protracted low state in 2018 and 2019. The X-ray flux is at the lowest level so far observed, and the extremely low continuum flux reveals a host of soft X-ray emission lines from photoionized gas. The simultaneous UV flux drop suggests that the variability is intrinsic to the source, and we confirm this with broad-band X-ray spectroscopy. The dominance of the soft X-ray lines at low energies and distant reflection at high energies, is therefore due to the respective emission regions being located far enough from the X-ray source that they have not yet seen the flux drop. Between the two XMM–Newton spectra, taken 6 months apart, the emission line ratio in the O VII triplet changes drastically. We attribute this change to a drop in the ionization of intervening warm absorption, which means that the absorber must cover a large fraction of the line emitting region, and extend much further from the black hole than previously assumed. The HST spectrum, taken in 2018, shows that new absorption features have appeared on the blue wings of C III*, Ly α, N V, Si IV, and C IV, likely due to absorbing gas cooling in response to the low flux state
- …