420 research outputs found

    Strongly Non-Equilibrium Bose-Einstein Condensation in a Trapped Gas

    Full text link
    We present a qualitative (and quantitative, at the level of estimates) analysis of the ordering kinetics in a strongly non-equilibrium state of a weakly interacting Bose gas, trapped with an external potential. At certain conditions, the ordering process is predicted to be even more rich than in the homogeneous case. Like in the homogeneous case, the most characteristic feature of the full-scale non-equilibrium process is the formation of superfluid turbulence.Comment: 4 pages, revtex, no figures. Submitted to PR

    The Nature of the Nuclear H2O Masers of NGC 1068: Reverberation and Evidence for a Rotating Disk Geometry

    Get PDF
    We report new (1995) Very Large Array observations and (1984 - 1999) Effelsberg 100m monitoring observations of the 22 GHz H2O maser spectrum of the Seyfert 2 galaxy NGC 1068. The sensitive VLA observations provide a registration of the 22 GHz continuum emission and the location of the maser spots with an accuracy of ~ 5 mas. Within the monitoring data, we find evidence that the nuclear masers vary coherently on time-scales of months to years, much more rapidly than the dynamical time-scale. We argue that the nuclear masers are responding in reverberation to a central power source, presumably the central engine. Between October and November 1997, we detected a simultaneous flare of the blue-shifted and red-shifted satellite maser lines. Reverberation in a rotating disk naturally explains the simultaneous flaring. There is also evidence that near-infrared emission from dust grains associated with the maser disk also responds to the central engine. We present a model in which an X-ray flare results in both the loss of maser signal in 1990 and the peak of the near-infrared light curve in 1994. In support of a rotating disk geometry for the nuclear masers, we find no evidence for centripetal accelerations of the redshifted nuclear masers; the limits are +/- 0.006 km/s/year, implying that the masers are located within 2 degrees of the kinematic line-of-nodes. We also searched for high velocity maser emission like that observed in NGC 4258. In both VLA and Effelsberg spectra, we detect no high velocity lines between +/- 350 km/s to +/- 850 km/s relative to systemic, arguing that masers only lie outside a radius of ~ 0.6 pc (1.9 light years) from the central engine (assuming a distance of 14.4 Mpc).Comment: 62 pages, 19 figure

    Heavy and Complex X-ray Absorption Towards the Nucleus of Markarian 6

    Get PDF
    We have used the ASCA satellite to make the first X-ray spectra of Markarian 6, a bright Seyfert 1.5 galaxy with complex and variable permitted lines, an ionization cone, and remarkable radio structures. Our 0.6--9.5 keV spectra penetrate to the black hole core of this Seyfert and reveal heavy and complex intrinsic X-ray absorption. Both total covering and single partial covering models fail to acceptably fit the observed absorption, and double partial covering or partial covering plus warm absorption appears to be required. The double partial covering model provides the best statistical fit to the data, and we measure large column densities of ~ (3-20) * 10^{22} cm^{-2} irrespective of the particular spectral model under consideration. These X-ray columns are over an order of magnitude larger than expected based on observations at longer wavelengths. Our data suggest that most of the X-ray absorption occurs either in gas that has a relatively small amount of dust or in gas that is located within the Broad Line Region. The X-ray absorber may well be the putative `atmosphere' above the torus that collimates the ionization cone. We also detect an apparently broad 6.4 keV iron K-alpha line, and we present optical spectra demonstrating that the optical emission lines were in a representative state during our ASCA observation.Comment: 30 pages, 7 figures, Astrophysical Journal. Paper is also available at: http://www.astro.psu.edu/users/johnf/Text/research.htm

    Gas Dynamics in the Luminous Merger NGC 6240

    Get PDF
    We report 0.5"x0.9" resolution, interferometric observations of the 1.3 mm CO J=2-1 line in the infrared luminous galactic merger NGC 6240. About half of the CO flux is concentrated in a rotating but highly turbulent, thick disk structure centered between the two radio and near-infrared nuclei. A number of gas features connect this ~500 pc diameter central disk to larger scales. Throughout this region the molecular gas has local velocity widths which exceed 300 km/s FWHM and even reach FWZP line widths of 1000 km/s in a number of directions. The mass of the central gas concentration constitutes a significant fraction of the dynamical mass, M_gas(R<470 pc) ~ 2-4x10^9 M_o ~ 0.3-0.7 M_dyn. We conclude that NGC 6240 is in an earlier merging stage than the prototypical ultraluminous galaxy, Arp 220. The interstellar gas in NGC 6240 is in the process of settling between the two progenitor stellar nuclei, is dissipating rapidly and will likely form a central thin disk. In the next merger stage, NGC 6240 may well experience a major starburst like that observed in Arp 220.Comment: To be published in Ap.J.; 7 figure

    An Atlas of Warm AGN and Starbursts from the IRAS Deep Fields

    Full text link
    We present 180 AGN candidates based on color selection from the IRAS slow-scan deep observations, with color criteria broadened from the initial Point-Source Catalog samples to include similar objects with redshifts up to z=1 and allowing for two-band detections. Spectroscopic identifications have been obtained for 80 (44%); some additional ones are secure based on radio detections or optical morphology, although yet unobserved spectroscopically. These spectroscopic identifications include 13 Sy 1 galaxies, 17 Sy 2 Seyferts, 29 starbursts, 7 LINER systems, and 13 emission-line galaxies so heavily reddened as to remain of ambiguous classification. The optical magnitudes range from R=12.0-20.5; counts suggest that incompleteness is important fainter than R=15.5. Redshifts extend to z=0.51, with a significant part of the sample at z>0.2. The sample includes slightly more AGN than star-forming systems among those where the spectra contain enough diagnostic feature to make the distinction. The active nuclei include several broad-line objects with strong Fe II emission, and composite objects with the absorption-line signatures of fading starbursts. These AGN with warm far-IR colors have little overlap with the "red AGN" identified with 2MASS; only a single Sy 1 was detected by 2MASS with J-K > 2. Some reliable IRAS detections have either very faint optical counterparts or only absorption-line galaxies, potentially being deeply obscured AGN. The IRAS detections include a newly identified symbiotic star, and several possible examples of the "Vega phenomenon", including dwarfs as cool as type K. Appendices detail these candidate stars, and the optical-identification content of a particularly deep set of high-latitude IRAS scans (probing the limits of optical identification from IRAS data alone).Comment: ApJ Suppl, in press. Figures converted to JPEG/GIF for better compression; PDF with full-resolution figures available before publication at http://www.astr.ua.edu/keel/aoagn.pd

    The Extended Blue Continuum and Line Emission around the Central Radio Galaxy in Abell 2597

    Get PDF
    We present results from detailed imaging of the centrally dominant radio elliptical galaxy in the cooling flow cluster Abell 2597, using data obtained with the Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST). This object is one of the archetypal "blue-lobed" cooling flow radio elliptical galaxies, also displaying a luminous emission-line nebula, a compact radio source, and a significant dust lane and evidence of molecular gas in its center. We show that the radio source is surrounded by a complex network of emission-line filaments, some of which display a close spatial association with the outer boundary of the radio lobes. We present a detailed analysis of the physical properties of ionized and neutral gas associated with the radio lobes, and show that their properties are strongly suggestive of direct interactions between the radio plasma and ambient gas. We resolve the blue continuum emission into a series of knots and clumps, and present evidence that these are most likely due to regions of recent star formation. We investigate several possible triggering mechanisms for the star formation, including direct interactions with the radio source, filaments condensing from the cooling flow, or the result of an interaction with a gas-rich galaxy, which may also have been responsible for fueling the active nucleus. We propose that the properties of the source are plausibly explained in terms of accretion of gas by the cD during an interaction with a gas-rich galaxy, which combined with the fact that this object is located at the center of a dense, high-pressure ICM can account for the high rates of star formation and the strong confinement of the radio source.Comment: Astrophysical Journal, in press, 34 pages, includes 6 PostScript figures. Latex format, uses aaspp4.sty and epsf.sty file

    A Radio Study of the Seyfert galaxy Markarian 6: Implications for Seyfert life-cycles

    Get PDF
    We have carried out an extensive radio study with the Very Large Array on the Seyfert 1.5 galaxy Mrk 6 and imaged a spectacular radio structure in the source. The radio emission occurs on three different spatial scales, from ~7.5 kpc bubbles to ~1.5 kpc bubbles lying nearly orthogonal to them and a ~1 kpc radio jet lying orthogonal to the kpc-scale bubble. To explain the complex morphology, we first consider a scenario in which the radio structures are the result of superwinds ejected by a nuclear starburst. However, recent Spitzer observations of Mrk 6 provide an upper limit to the star formation rate (SFR) of ~5.5 M_sun/yr, an estimate much lower than the SFR of ~33 M_sun/yr derived assuming that the bubbles are a result of starburst winds energized by supernovae explosions. Thus, a starburst alone cannot meet the energy requirements for the creation of the bubbles in Mrk 6. We show that a single plasmon model is energetically infeasible, and we argue that a jet-driven bubble model while energetically feasible does not produce the complex radio morphologies. Finally, we consider a model in which the complex radio structure is a result of an episodically-powered precessing jet that changes its orientation. This model is the most attractive as it can naturally explain the complex radio morphology, and is consistent with the energetics, the spectral index and the polarization structure. Radio emission in this scenario is a short-lived phenomenon in the lifetime of a Seyfert galaxy which results due to an accretion event.Comment: Accepted for publication in Ap

    Observations of HI Absorbing Gas in Compact Radio Sources at Cosmological Redshifts

    Get PDF
    We present an overview of the occurrence and properties of atomic gas associated with compact radio sources at redshifts up to z=0.85. Searches for HI 21cm absorption were made with the Westerbork Synthesis Radio Telescope at UHF-high frequencies (725-1200 MHz). Detections were obtained for 19 of the 57 sources with usable spectra (33%). We have found a large range in line depths, from tau=0.16 to tau<=0.001. There is a substantial variety of line profiles, including Gaussians of less than 10km/s, to more typically 150km/s, as well as irregular and multi-peaked absorption profiles, sometimes spanning several hundred km/s. Assuming uniform coverage of the entire radio source, we obtain column depths of atomic gas between 1e19 and 3.3e21(Tsp/100K)(1/f)cm^(-2). There is evidence for significant gas motions, but in contrast to earlier results at low redshift, there are many sources in which the HI velocity is substantially negative (up to v=-1420km/s) with respect to the optical redshift, suggesting that in these sources the atomic gas, rather than falling into the centre, may be be flowing out, interacting with the jets, or rotating around the nucleus.Comment: 10 pages, accepted for publication in A&

    Parental cultural models and resources for understanding mathematical achievement in culturally diverse school settings

    Get PDF
    This paper proposes that the theoretical concept of cultural models can offer useful insights into parental involvement in their child’s mathematical achievement and the resources they use to go about gaining information in culturally diverse learning settings. This examination takes place within a cultural-developmental framework and draws on the notion of cultural models to explicate parental understandings of their child’s mathematics achievement and what resources are used to make sense of this. Three parental resources are scrutinized: (a) the teacher, (b) examination test results, and (c) constructions of child development. The interviews with 22 parents revealed some ambiguity around the interpretation of these resources by the parent, which was often the result of incongruent cultural models held between the home and the school. The resources mentioned are often perceived as being unambiguous but show themselves instead to be highly interpretive because of the diversity of cultural models in existence in culturally diverse settings. Parents who are in minority or marginalized positions tend to have difficulties in interpreting cultural models held by school, thereby disempowering them to be parentally involved in the way the school would like
    corecore