87 research outputs found
Quantitative analysis of the dripping and jetting regimes in co-flowing capillary jets
We study a liquid jet that breaks up into drops in an external co-flowing
liquid inside a confining microfluidic geometry. The jet breakup can occur
right after the nozzle in a phenomenon named dripping or through the generation
of a liquid jet that breaks up a long distance from the nozzle, which is called
jetting. Traditionally, these two regimes have been considered to reflect the
existence of two kinds of spatiotemporal instabilities of a fluid jet, the
dripping regime corresponding to an absolutely unstable jet and the jetting
regime to a convectively unstable jet. Here, we present quantitative
measurements of the dripping and jetting regimes, both in an unforced and a
forced state, and compare these measurements with recent theoretical studies of
spatiotemporal instability of a confined liquid jet in a co-flowing liquid. In
the unforced state, the frequency of oscillation and breakup of the liquid jet
is measured and compared to the theoretical predictions. The dominant frequency
of the jet oscillations as a function of the inner flow rate agrees
qualitatively with the theoretical predictions in the jetting regime but not in
the dripping regime. In the forced state, achieved with periodic laser heating,
the dripping regime is found to be insensitive to the perturbation and the
frequency of drop formation remains unaltered. The jetting regime, on the
contrary, amplifies the externally imposed frequency, which translates in the
formation of drops at the frequency imposed by the external forcing. In
conclusion, the dripping and jetting regimes are found to exhibit the main
features of absolutely and convectively unstable flows respectively, but the
frequency selection in the dripping regime is not ruled by the absolute
frequency predicted by the stability analysis.Comment: 10 pages, 12 figures, to appear in Physics of Fluid
Expressiveness of Temporal Query Languages: On the Modelling of Intervals, Interval Relationships and States
Storing and retrieving time-related information are important, or even critical, tasks on many areas of Computer Science (CS) and in particular for Artificial Intelligence (AI). The expressive power of temporal databases/query languages has been studied from different perspectives, but the kind of temporal information they are able to store and retrieve is not always conveniently addressed. Here we assess a number of temporal query languages with respect to the modelling of time intervals, interval relationships and states, which can be thought of as the building blocks to represent and reason about a large and important class of historic information. To survey the facilities and issues which are particular to certain temporal query languages not only gives an idea about how useful they can be in particular contexts, but also gives an interesting insight in how these issues are, in many cases, ultimately inherent to the database paradigm. While in the area of AI declarative languages are usually the preferred choice, other areas of CS heavily rely on the extended relational paradigm. This paper, then, will be concerned with the representation of historic information in two well known temporal query languages: it Templog in the context of temporal deductive databases, and it TSQL2 in the context of temporal relational databases. We hope the results highlighted here will increase cross-fertilisation between different communities. This article can be related to recent publications drawing the attention towards the different approaches followed by the Databases and AI communities when using time-related concepts
Answering Non-Monotonic Queries in Relational Data Exchange
Relational data exchange is the problem of translating relational data from a
source schema into a target schema, according to a specification of the
relationship between the source data and the target data. One of the basic
issues is how to answer queries that are posed against target data. While
consensus has been reached on the definitive semantics for monotonic queries,
this issue turned out to be considerably more difficult for non-monotonic
queries. Several semantics for non-monotonic queries have been proposed in the
past few years. This article proposes a new semantics for non-monotonic
queries, called the GCWA*-semantics. It is inspired by semantics from the area
of deductive databases. We show that the GCWA*-semantics coincides with the
standard open world semantics on monotonic queries, and we further explore the
(data) complexity of evaluating non-monotonic queries under the
GCWA*-semantics. In particular, we introduce a class of schema mappings for
which universal queries can be evaluated under the GCWA*-semantics in
polynomial time (data complexity) on the core of the universal solutions.Comment: 55 pages, 3 figure
Coherent Isotope History of Andean Ice Cores over the Last Century
[1] Isotope records from Andean ice cores provide detailed and high-resolution climate information on various time scales. However, the relationship between these valuable isotope records and local or regional climate remains poorly understood. Here we present results from two new drillings in Bolivia, from the Illimani and the Sajama ice caps. All four high altitude isotope signals in the Andes now available (Huascaran, Quelccaya, Illimani and Sajama) show near identical decadal variability in the 20th century. Comparison with general circulation model results and meteorological data suggest that the Andean high altitude records are primarily controlled by precipitation variability over the Amazon basin
A strong control of the South American SeeSaw on the intra-seasonal variability of the isotopic composition of precipitation in the Bolivian Andes
International audienceWater stable isotopes (d) in tropical regions are a valuable tool to study both convective processes and climate variability provided that local and remote controls on d are well known. Here, we examine the intra-seasonal variability of the event-based isotopic composition of precipitation (dDZongo) in the Bolivian Andes (Zongo valley, 16°20'S-67°47'W) from September 1st, 1999 to August 31st, 2000. We show that the local amount effect is a very poor parameter to explain dDZongo. We thus explore the property of water isotopes to integrate both temporal and spatial convective activities. We first show that the local convective activity averaged over the 7-8days preceding the rainy event is an important control on dDZongo during the rainy season (~40% of the dDZongo variability is captured). This could be explained by the progressive depletion of local water vapor by unsaturated downdrafts of convective systems. The exploration of remote convective controls on dDZongo shows a strong influence of the South American SeeSaw (SASS) which is the first climate mode controlling the precipitation variability in tropical South America during austral summer. Our study clearly evidences that temporal and spatial controls are not fully independent as the 7-day averaged convection in the Zongo valley responds to the SASS. Our results are finally used to evaluate a water isotope enabled atmospheric general circulation model (LMDZ-iso), using the stretched grid functionality to run zoomed simulations over the entire South American continent (15°N-55°S; 30°-85°W). We find that zoomed simulations capture the intra-seasonal isotopic variation and its controls, though with an overestimated local sensitivity, and confirm the role of a remote control on d according to a SASS-like dipolar structure. © 2011 Elsevier B.V
- …