619 research outputs found

    Using Residential History and Groundwater Modeling to Examine Drinking Water Exposure and Breast Cancer

    Get PDF
    BACKGROUND. Spatial analyses of case-control data have suggested a possible link between breast cancer and groundwater plumes in upper Cape Cod, Massachusetts. OBJECTIVE. We integrated residential histories, public water distribution systems, and groundwater modeling within geographic information systems (GIS) to examine the association between exposure to drinking water that has been contaminated by wastewater effluent and breast cancer. METHODS. Exposure was assessed from 1947 to 1993 for 638 breast cancer cases who were diagnosed from 1983 to 1993 and 842 controls; we took into account residential mobility and drinking water source. To estimate the historical impact of effluent on drinking water wells, we modified a modular three-dimensional finite-difference groundwater model (MODFLOW) from the U.S. Geological Survey. The analyses included latency and exposure duration. RESULTS. Wastewater effluent impacted the drinking water wells of study participants as early as 1966. For > 0-5 years of exposure (versus no exposure), associations were generally null. Adjusted odds ratios (AORs) for > 10 years of exposure were slightly increased, assuming latency periods of 0 or 10 years [AOR = 1.3; 95% confidence interval (CI), 0.9-1.9 and AOR = 1.6; 95% CI, 0.8-3.2, respectively]. Statistically significant associations were estimated for ever-exposed versus never-exposed women when a 20-year latency period was assumed (AOR = 1.9; 95% CI, 1.0-3.4). A sensitivity analysis that classified exposures assuming lower well-pumping rates showed similar results. CONCLUSION. We investigated the hypothesis generated by earlier spatial analyses that exposure to drinking water contaminated by wastewater effluent may be associated with breast cancer. Using a detailed exposure assessment, we found an association with breast cancer that increased with longer latency and greater exposure duration.National Cancer Institute (5R03CA119703-02); National Institute of Environmental Health Sciences (5P42 ES007381

    Observation of coherent many-body Rabi oscillations

    Full text link
    A two-level quantum system coherently driven by a resonant electromagnetic field oscillates sinusoidally between the two levels at frequency Ω\Omega which is proportional to the field amplitude [1]. This phenomenon, known as the Rabi oscillation, has been at the heart of atomic, molecular and optical physics since the seminal work of its namesake and coauthors [2]. Notably, Rabi oscillations in isolated single atoms or dilute gases form the basis for metrological applications such as atomic clocks and precision measurements of physical constants [3]. Both inhomogeneous distribution of coupling strength to the field and interactions between individual atoms reduce the visibility of the oscillation and may even suppress it completely. A remarkable transformation takes place in the limit where only a single excitation can be present in the sample due to either initial conditions or atomic interactions: there arises a collective, many-body Rabi oscillation at a frequency N0.5ΩN^0.5\Omega involving all N >> 1 atoms in the sample [4]. This is true even for inhomogeneous atom-field coupling distributions, where single-atom Rabi oscillations may be invisible. When one of the two levels is a strongly interacting Rydberg level, many-body Rabi oscillations emerge as a consequence of the Rydberg excitation blockade. Lukin and coauthors outlined an approach to quantum information processing based on this effect [5]. Here we report initial observations of coherent many-body Rabi oscillations between the ground level and a Rydberg level using several hundred cold rubidium atoms. The strongly pronounced oscillations indicate a nearly complete excitation blockade of the entire mesoscopic ensemble by a single excited atom. The results pave the way towards quantum computation and simulation using ensembles of atoms

    Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells

    Get PDF
    Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator

    Controlling the shape of a quantum wavefunction

    Full text link
    The ability to control the shape and motion of quantum states(1,2) may lead to methods for bond-selective chemistry and novel quantum technologies, such as quantum computing. The classical coherence of laser light has been used to guide quantum systems into desired target states through interfering pathways(3-5). These experiments used the control of target properties-such as fluorescence from a dye solution(6), the current in a semiconductor(7,8) 8 Or the dissociation fraction of an excited molecule(9)-to infer control over the quantum state. Here we report a direct approach to coherent quantum control that allows us to actively manipulate the shape of an atomic electron's radial wavefunction, We use a computer-controlled laser to excite a coherent state in atomic caesium. The shape of the wavefunction is then measured(10) and the information fed back into the laser control system, which reprograms the optical field. The process is iterated until the measured shape of the wavefunction matches that of a target wavepacket, established at the start of the experiment. We find that, using a variation of quantum holography(11) to reconstruct the measured wavefunction, the quantum state can be reshaped to match the target within two iterations of the feedback loop.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62625/1/397233a0.pd

    Normative equations for central augmentation index:Assessment of inter-population applicability and how it could be improved

    Get PDF
    Common reference values of arterial stiffness indices could be effective screening tool in detecting vascular phenotypes at risk. However, populations of the same ethnicity may differ in vascular phenotype due to different environmental pressure. We examined applicability of normative equations for central augmentation index (cAIx) derived from Danish population with low cardiovascular risk on the corresponding Croatian population from the Mediterranean area. Disagreement between measured and predicted cAIx was assessed by Bland-Altman analysis. Both, cAIx-age distribution and normative equation fitted on Croatian data were highly comparable to Danish low-risk sample. Contrarily, Bland-Altman analysis of cAIx disagreement revealed a curvilinear deviation from the line of full agreement indicating that the equations were not equally applicable across age ranges. Stratification of individual data into age decades eliminated curvilinearity in all but the 30–39 (men) and 40–49 (women) decades. In other decades, linear disagreement independent of age persisted indicating that cAIx determinants other than age were not envisaged/compensated for by proposed equations. Therefore, established normative equations are equally applicable to both Nordic and Mediterranean populations but are of limited use. If designed for narrower age ranges, the equations’ sensitivity in detecting vascular phenotypes at risk and applicability to different populations could be improved

    The Effect of Intra-Abdominal Hypertension Incorporating Severe Acute Pancreatitis in a Porcine Model

    Get PDF
    Introduction: Abdominal compartment syndrome (ACS) and intra abdominal hypertension(IAH) are common clinical findings in patients with severe acute pancreatitis(SAP). It is thought that an increased intra abdominal pressure(IAP) is associated with poor prognosis in SAP patients. But the detailed effect of IAH/ACS on different organ system is not clear. The aim of this study was to assess the effect of SAP combined with IAH on hemodynamics, systemic oxygenation, and organ damage in a 12 h lasting porcine model

    Preventable hospital admissions among the homeless in California: A retrospective analysis of care for ambulatory care sensitive conditions

    Get PDF
    Background Limited research exists that investigates hospital admissions for ambulatory care sensitive conditions (ACSCs) among the homeless, who frequently lack a usual source of care. This study profiled ACSC admissions for homeless patients. Methods Bivariate analyses and logistic regression were completed to investigate ACSC and non-ACSC admissions among homeless patients using the 2010 California State Inpatient Database. Results Homeless patients admitted for an ACSC were mostly male, non-Hispanic white, and on average 49.9 years old. In the predictive model, the odds of an ACSC admission among homeless patients increased when they were black, admitted to the emergency department or transferred from another health facility. Having Medicare was associated with a decreased odds of an ACSC admission. Conclusions Specific characteristics are associated with a greater likelihood of an ACSC admission. Research should examine how these characteristics contribute to ACSC hospitalizations and findings should be linked to programs designed to serve as a safety-net for homeless patients to reduce hospitalizations
    • …
    corecore