134 research outputs found

    Shock Temperature of Stainless Steel and a High Pressure - High Temperature Constraint on Thermal Diffusivity of Al_2O_3

    Get PDF
    Time dependent shock temperatures were measured for stainless steel (SS) films in contact with transparent anvils. The anvil/window material was the same as the driver material so that there would be symmetric heat flow from the sample. Inferred Hugoniot temperatures, T_h , of 5800–7500 K at 232–321 GPa are consistent with previous measurements in SS. Temperatures at the film‐anvil interface (T_i ), which are more directly measured than T_h , indicate that T_i did not decrease measurably during the approximately 250 ns that the shock wave was in Al_2O_3 or LiF anvils. Thus an upper bound is obtained for the thermal diffusivity of Al_2O_3 at the metal/anvil interface at 230 GPa and 6000K of Îș≀0.00096 cm_2/s. This is a factor of 17 lower than previously calculated values, resulting in a decrease of the inferred T_h by 730 k. The observed shock temperatures are combined with temperatures calculated from measured Hugoniots and are used to calculate thermal conductivities of Al_2O_3. Also we note that since there was no measurable intensity decrease during the time when the shock wave propagated through the window, we infer from this that Al_2O_3 remained transparent while in the shocked state. Thus sapphire is a good window material to at least 250 GPa for shock temperature measurements for metals

    Free-surface light emission from shocked Teflon

    Get PDF

    The Tetraspanin Protein Peripherin-2 Forms a Complex with Melanoregulin, a Putative Membrane Fusion Regulator

    Get PDF
    Peripherin-2, the product of the rds gene, is a tetraspanin protein. In this study, we show that peripherin-2 forms a complex with melanoregulin (MREG), the product of the Mreg locus. Genetic studies suggest that MREG is involved in organelle biogenesis. In this study, we explore the role of this protein in processes associated with the formation of disk membranes, specialized organelles of photoreceptor rod cells. MREG antibodies were generated and found to be immunoreactive with a 28 kDa protein in retinal extracts, bovine OS, ARPE-19 cells, and rat RPE. MREG colocalized with peripherin-2 in WT (CB6F1/J) and in rds+/- retinas. Western blots of serial tangential sections confirmed the close association of these two proteins within the IS and basal outer segment of rods. Immunoprecipitation (IP) of OS extracts showed formation of a complex between MREG and peripherin-2-ROM-1 hetero-oligomers. This interaction was confirmed with pulldown analyses in which the GST-PerCter protein selectively pulled down His-MREG and His-MREG selectively pulled down PerCter. Biacore analysis using peptide inhibitors and per-2 truncation mutant studies allowed us to map the MREG binding site on per-2 to the last five residues of the C-terminus (Gln341-Gly346), and kinetic data predicted a KD of 80 nM for PerCter-MREG binding. Finally, the effect of MREG on photoreceptor specific membrane fusion was assayed using a disk-plasma membrane cell free assay. Preincubation of target membranes with MREG resulted in a dose-dependent inhibition of fusion with an IC50 in the submicromolar range. Collectively, these results suggest that this newly identified protein regulates peripherin-2 function. © 2007 American Chemical Society

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    A Critical Tryptophan and Ca2+ in Activation and Catalysis of TPPI, the Enzyme Deficient in Classic Late-Infantile Neuronal Ceroid Lipofuscinosis

    Get PDF
    Tripeptidyl aminopeptidase I (TPPI) is a crucial lysosomal enzyme that is deficient in the fatal neurodegenerative disorder called classic late-infantile neuronal ceroid lipofuscinosis (LINCL). It is involved in the catabolism of proteins in the lysosomes. Recent X-ray crystallographic studies have provided insights into the structural/functional aspects of TPPI catalysis, and indicated presence of an octahedrally coordinated Ca(2+).Purified precursor and mature TPPI were used to study inhibition by NBS and EDTA using biochemical and immunological approaches. Site-directed mutagenesis with confocal imaging technique identified a critical W residue in TPPI activity, and the processing of precursor into mature enzyme.NBS is a potent inhibitor of the purified TPPI. In mammalian TPPI, W542 is critical for tripeptidyl peptidase activity as well as autocatalysis. Transfection studies have indicated that mutants of the TPPI that harbor residues other than W at position 542 have delayed processing, and are retained in the ER rather than transported to lysosomes. EDTA inhibits the autocatalytic processing of the precursor TPPI.We propose that W542 and Ca(2+) are critical for maintaining the proper tertiary structure of the precursor proprotein as well as the mature TPPI. Additionally, Ca(2+) is necessary for the autocatalytic processing of the precursor protein into the mature TPPI. We have identified NBS as a potent TPPI inhibitor, which led in delineating a critical role for W542 residue. Studies with such compounds will prove valuable in identifying the critical residues in the TPPI catalysis and its structure-function analysis

    Deep sequencing of gastric carcinoma reveals somatic mutations relevant to personalized medicine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Globally, gastric cancer is the second most common cause of cancer-related death, with the majority of the health burden borne by economically less-developed countries.</p> <p>Methods</p> <p>Here, we report a genetic characterization of 50 gastric adenocarcinoma samples, using affymetrix SNP arrays and Illumina mRNA expression arrays as well as Illumina sequencing of the coding regions of 384 genes belonging to various pathways known to be altered in other cancers.</p> <p>Results</p> <p>Genetic alterations were observed in the WNT, Hedgehog, cell cycle, DNA damage and epithelial-to-mesenchymal-transition pathways.</p> <p>Conclusions</p> <p>The data suggests targeted therapies approved or in clinical development for gastric carcinoma would be of benefit to ~22% of the patients studied. In addition, the novel mutations detected here, are likely to influence clinical response and suggest new targets for drug discovery.</p

    The evolutionary significance of polyploidy

    Get PDF
    Polyploidy, or the duplication of entire genomes, has been observed in prokaryotic and eukaryotic organisms, and in somatic and germ cells. The consequences of polyploidization are complex and variable, and they differ greatly between systems (clonal or non-clonal) and species, but the process has often been considered to be an evolutionary 'dead end'. Here, we review the accumulating evidence that correlates polyploidization with environmental change or stress, and that has led to an increased recognition of its short-term adaptive potential. In addition, we discuss how, once polyploidy has been established, the unique retention profile of duplicated genes following whole-genome duplication might explain key longer-term evolutionary transitions and a general increase in biological complexity

    Improved imputation of low-frequency and rare variants using the UK10K haplotype reference panel

    Get PDF
    Imputing genotypes from reference panels created by whole-genome sequencing (WGS) provides a cost-effective strategy for augmenting the single-nucleotide polymorphism (SNP) content of genome-wide arrays. The UK10K Cohorts project has generated a data set of 3,781 whole genomes sequenced at low depth (average 7x), aiming to exhaustively characterize genetic variation down to 0.1% minor allele frequency in the British population. Here we demonstrate the value of this resource for improving imputation accuracy at rare and low-frequency variants in both a UK and an Italian population. We show that large increases in imputation accuracy can be achieved by re-phasing WGS reference panels after initial genotype calling. We also present a method for combining WGS panels to improve variant coverage and downstream imputation accuracy, which we illustrate by integrating 7,562 WGS haplotypes from the UK10K project with 2,184 haplotypes from the 1000 Genomes Project. Finally, we introduce a novel approximation that maintains speed without sacrificing imputation accuracy for rare variants
    • 

    corecore