31 research outputs found
Polycyclic aromatic hydrocarbons (PAHS) in cachaça, rum, whiskey and alcohol fuel
The concentration of 15 polycyclic aromatic hydrocarbons (PAHs) in 57 samples of distillates (cachaça, rum, whiskey, and alcohol fuel) has been determined by HPLC-Fluorescence detection. The quantitative analytical profile of PAHs treated by Partial Least Square - Discriminant Analysis (PLS-DA) provided a good classification of the studied spirits based on their PAHs content. Additionally, the classification of the sugar cane derivatives according to the harvest practice was obtained treating the analytical data by Linear Discriminant Analysis (LDA), using naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz[a]anthracene, benz[b]fluoranthene, and benz[g,h,i]perylene, as a chemical descriptors.CNPqCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)FAPES
A Comparative Proteomic Analysis of Praziquantel-Susceptible and Praziquantel-Resistant Schistosoma mansoni Reveals Distinct Response Between Male and Female Animals
publishersversionpublishe
Contents of ethyl carbamate in sugar cane and manioc spirits: part II
Herein, we report the concentration of ethyl carbamate (EC) and copper in 380 samples of sugar-cane spirit and 45 samples of manioc spirit as determined by GC-MS and FAAS respectively. The cyanide content determined spectrophotometrically is reported for the manioc spirit. Sugar cane spirit produced by alembic distillation (70,0 µg L-1) shown a lower content of EC than samples produced by column distillation (270 µg L-1). No simple correlation between the content of EC and copper for sugar cane spirit as well among the concentration of EC, copper, and cyanide for manioc spirit could be observed.Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)CNPqFAPES
A Comparative Proteomic Analysis of Praziquantel-Susceptible and Praziquantel-Resistant Schistosoma mansoni Reveals Distinct Response Between Male and Female Animals
Funding Information: We acknowledge the Mass Spectrometry Laboratory at Brazilian Biosciences National Laboratory, CNPEM, Campinas, Brazil for their support with the mass spectrometry analysis. The authors would like to thank Professor Ana Tomás from IBMC and GABBA program (Porto, Portugal), for very helpful suggestions that improved greatly this paper. Funding Information: This work was initially supported by Fundação para a Ciência e a Tecnologia de Portugal (FCT) by grant PEst-OE/SAU/UI0074/2014. AP-A was initially funded by Graduate Program in Areas of Basic and Applied Biology (GABBA) from the Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto and FCT (SFRH/BD/51697/2011) meanwhile received the António Coutinho Science Award (11/BI-PD/20) by the Instituto Gulbenkian de Ciência (IGC) of the Fundação Calouste Gulbenkian, and Fundação Familia Merk and Câmara Municipal de Oeiras, and nowadays is funded by the German Federal Ministry of Education and Research (BMBF), the West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL) through WASCAL Graduate Studies Programme in Climate Change and Marine Sciences at the Institute for Enginneering and Marine Sciences, Atlantic Technical University, Cabo Verde. The Brazilian agencies that were involved in this project are Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq Proc. Nrs 400168/2013-8, and 375781/2013-7 that funded AA, and Fundação de Amparo a Pesquisa no Estado de São Paulo – FAPESP Proc. Nrs 2009/54040-8, 2009/16598-7, and 2008/04050-4 that funded infrastructure to EC. Project FAPESP 2014/07331-5 funded infrastructure to FA. This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 1742613 and 88882.317690/2019-01, as a fellowship to CG and Finance Code 001 as a fellowship to TM. AA is now being funded by Fundação para a Ciência e Tecnologia (FCT) of Portugal PTDC/CVT-CVT/28798/2017. Fundação para a Ciência e Tecnologia (FCT) of Portugal provided funds to GHTM (UID/Multi/04413/2020) funded PF, ABA, and SB. Publisher Copyright: Copyright © 2021 Pinto-Almeida, Mendes, Ferreira, Abecasis, Belo, Anibal, Allegretti, Galinaro, Carrilho and Afonso.Schistosomiasis is a chronic neglected tropical disease saddling millions of people in the world, mainly children living in poor rural areas. Praziquantel (PZQ) is currently the only drug used for the treatment and control of this disease. However, the extensive use of this drug has brought concern about the emergence of PZQ-resistance/tolerance by Schistosoma mansoni. Studies of Schistosoma spp. genome, transcriptome, and proteome are crucial to better understand this situation. In this in vitro study, we compare the proteomes of a S. mansoni variant strain stably resistant to PZQ and isogenic to its fully susceptible parental counterpart, identifying proteins from male and female adult parasites of PZQ-resistant and PZQ-susceptible strains, exposed and not exposed to PZQ. A total of 60 Schistosoma spp. proteins were identified, some of which present or absent in either strain, which may putatively be involved in the PZQ-resistance phenomenon. These proteins were present in adult parasites not exposed to PZQ, but some of them disappeared when these adult parasites were exposed to the drug. Understanding the development of PZQ-resistance in S. mansoni is crucial to prolong the efficacy of the current drug and develop markers for monitoring the potential emergence of drug resistance.publishersversionpublishe
CHEMICAL PROFILE COMPARISON OF SUGARCANE SPIRITS FROM THE SAME WINE DISTILLED IN ALEMBICS AND COLUMNS
CHEMICAL PROFILE COMPARISON OF SUGARCANE SPIRITS FROM THE SAME WINE DISTILLED IN ALEMBICS AND COLUMNS. Six wines were distilled in two different distillation apparatus (alembic and column) producing 24 distillates (6 for each alembic fraction - head, heart and tail; 6 column distillates). The chemical composition of distillates from the same wine was determined using chromatographic techniques. Analytical data were subjected to Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) allowing discrimination of four clusters according to chemical profiles. Both distillation processes influenced the sugarcane spirits chemical quality since two types of distillates with different quantitative chemical profiles were produced after the elimination of fermentation step influence
Quantitative chemical profile and multivariate statistical analysis of alembic distilled sugarcane spirit fractions
As concentrações de 39 compostos orgânicos foram determinadas em três frações (cabeça, coração e cauda) obtidas da destilação em alambique do caldo de cana fermentado. Os resultados foram avaliados utilizando-se análise de variância (ANOVA), teste de Tukey, análise de componentes principais (PCA), agrupamento hierárquico (HCA) e análise discriminante linear (LDA). De acordo com PCA e HCA, os dados experimentais conduzem à formação de três agrupamentos. As frações de cabeça deram origem a um grupo mais definido. As frações coração e cauda apresentaram alguma sobreposição coerente com sua composição em ácidos. As habilidades preditivas de calibração e validação dos modelos gerados pela LDA para a classificação das três frações foram de 90,5 e 100%, respectivamente. Este modelo reconheceu como coração doze de treze cachaças comerciais (92,3%) com boas características sensoriais, apresentando potencial para a orientação do processo de cortes
\"Distinction betwen cachaça produced with burned and non-burned sugar cane\"
Cachaça é a terceira das bebidas alcoólicas fermento-destilado mais consumida no mundo, com uma produção de aproximadamente 2,5 litros de bilhões por ano. Tradicionalmente, a cachaça é produzida a partir da destilação do mosto fermentado da cana-de-açúcar. Porém, ela pode sofrer a contaminação por HPAs (Hidrocarbonetos Policíclicos Aromáticos) quando a cana-de-açúcar utilizada na sua produção é queimada antes da sua colheita. Objetivando a distinção entre as amostras de cachaça produzidas a partir da cana-de-açúcar colhida após a queima ou não dos canaviais, foram analisados 15 HPAs em 26 amostras de cachaça produzidas com cana-de-açúcar queimada e 105 amostras de cachaça produzidas com cana-de-açúcar não queimada. As amostras de cachaça foram previamente concentradas por extração em fase sólida (SPE) e analisadas por cromatografia liquida de alta eficiência (HPLC), acoplada a um detector de fluorescência. Este método apresentou uma boa separação cromatográfica para a análise dos seguintes HPAs estudados: naftaleno, acenafteno, fluoreno, fenantreno, antraceno, fluoranteno, pireno, benzo(a)antraceno, criseno, benzo(b)fluoranteno, benzo(k)fluoranteno, benzo(a)pireno, dibenzo(a,h)antraceno, benzo(g,h,i)perileno e indeno(1,2,3-c,d)pireno. O método cromatográfico apresentou bons limites de detecção (5,68E-04 a 45,4 µg L-1), boa porcentagem de extração e recuperação (81,5 ± 9 % a 113 ± 5 %) e uma boa reprodutibilidade (> 90,0 %). As amostras produzidas a partir de cana-de-açúcar queimada apresentaram teores médios totais dos HPAs de 21,1 µg L-1, enquanto que as amostras produzidas com cana-de-açúcar não queimada apresentaram teores médios totais dos HPAs de 1,91 µg L-1. Os dados analíticos foram tratados por meio de análise multivariada (PCA, FA, PLS, DA, LDA, QDA e CDA), possibilitando uma boa distinção entre as amostras produzidas com cana queimada e não queimada. Os resultados dos modelos estatísticos revelaram uma elevada probabilidade (85,0 %) na diferenciação entre estes dois grupos de cachaçaCachaça is the third most consumed fermented alcoholic beverage in the world, with a production of nearly 2.5 billion liters a year. Traditionally, cachaça is made from the distillation of the fermented sugar cane juice. However, it may be contaminated by PAHs (Polycyclic Aromatic Hydrocarbons) when the sugar cane used for its production is burned before harvesting. Aiming at distinguishing spirits made from burned and non-burned sugar cane, 15 PAHs in 26 cachaças samples obtained from non-burned and 105 cachaça samples obtained from burned sugar cane have been analyzed. The cachaça samples were previously concentrated by solid phase extraction (SPE) and analyzed by high performance liquid chromatography (HPLC), coupled with a fluorescence detector. This method presented good chromatographic separation for the analysis of the following PAHs: naphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benz(a)anthracene, chrysene, benz(b)fluoranthene, benz(k)fluoranthene, benz(a)pyrene, dibenz(a,h)anthracene, benz(g,h,i)perylene, and indeno(1,2,3- c,d)pyrene. The chromatographic method showed good detection limits (5.68E-04 to 45.4 ? g L-1), good index for the clean up percentage and recovery (from 81.5 ± 9% to 113 ± 5%) and a good reproducibility (> 90.0%). The samples obtained from burned sugar cane presented 21.1 ? g L-1 total PAHs average contents while the ones obtained from non-burned sugar cane showed PAHs average contents of 1.91 ?g L-1. Such analytical data were treated by means of the multivariate statistical methods (PCA, FA, PLS, LDA, QDA and CDA), thus allowing good distinction among the samples obtained from burned and non-burned sugar cane. Results of the Abstract IQSC-USP statistical models presented high probability (85.0%) for the distinction between these two groups of spirits
Control and formation of ethyl carbamate in sugar cane spirits
A legislação brasileira estabelece o limite de 150 µg/L para os teores de carbamato de etila (CE ou uretana) em aguardentes. O presente trabalho indica que os teores de carbamato de etila em aguardentes podem ser reduzidos em até 92% do teor original após as aguardentes serem submetidas a uma nova destilação. Para amostras de aguardente recém destiladas (coletadas in loco) foi possível constatar que o CE também se forma após a destilação, e que a formação completa-se após 10 dias. A luz difusa não influenciou, quer na constante de velocidade quer na concentração de CE final. Esta, entretanto demonstrou-se dependente da temperatura. Observou-se que a reação ocorre com kobs de (6,4 ± 0,5) x 10-6 /s, a 25°C e pH 4,5, sendo este valor independente da origem da aguardente e da radiação luminosa. Os parâmetros de ativação para esta reação foram ΔH‡ 34 kcal/mol, ΔS‡ - 69 cal/K e ΔG‡ 54 kcal/mol. Foi possível estimar que o teor de uretana formado no interior do destilador foi inferior a 60% do CE total. Estudos com aguardente nas quais foi adicionado KOCN, indicaram que ocorre a formação de uretana com kobs (8,60 ± 0,4) x 10-5 /s, a 25°C, pH 4,5, com ΔH‡ 20,6 kcal/mol, ΔS‡ - 96,1 cal/K e ΔG‡ 48,7 kcal/mol. Esta reação não foi influenciada pela radiação luminosa (250 a 500 nm), bem como pelo teor alcoólico da aguardente (0,29 a 15,7 mol/L). O rendimento no teor de CE aumentou em função do teor alcoólico do meio, atingindo um valor máximo a 60% v/v. Cálculos quânticos sugeriram que o HNCO é a molécula reativa. Os resultados experimentais colhidos até o momento sugerem a existência de uma reação paralela consumindo parte do HNCO e, portanto limitando kobs e a relação [CE]teórico / [CE]experimental. A adição de NaCN à aguardente também conduz a formação de uretana, mas com constante de velocidade inferior a observada para o KOCN.Brazilian law establishes the limit of 150 µg/L for ethyl carbamate (EC, urethane) contents in sugar cane spirits. The present work indicates that the levels of ethyl carbamate in spirits may be reduced up to 92% of the original content after undergoing a new distillation. It was observed that EC is also formed after distillation in recent distillated samples collected in loco and that the EC formation is completed after 10 days. The light did not influence either the rate constant or the final EC concentration. However, the rate constant proved to be temperature dependent. It was observed that the reaction occurs with kobs (6.4 ± 0.5) x 10-6 /s at 25°C and pH 4.5, which value is independent of the spirits origin and light radiation. The activation parameters for this reaction were ΔH‡ 34 kcal/mol, ΔS‡ - 69 cal/K and ΔG‡ 54 kcal/mol. It was estimated that the concentration of urethane formed inside the distiller was less than 60% of total EC. Studies adding KOCN in sugar cane spirits indicated that the formation of urethane occurs with kobs (8.60 ± 0.4) x 10-5 /s at 25°C, pH 4.5, with ΔH‡ 20.6 kcal/mol, ΔS‡ - 96.1 cal/K and ΔG‡ 48.7 kcal/mol. This reaction was not influenced by light radiation (250 to 500 nm), as well as the alcohol content of spirits (0.29 to 15.7 mol/L). The yield on EC content increased according to the alcohol content of the medium; reaching a maximum value of 60% v/v. Quantum calculations have suggested that HNCO is the reactive molecule. The experimental results collected so far suggest the existence of a parallel reaction which consumes part of HNCO and therefore limits kobs and the relationship [CE]theorical / [EC]experimental. The addition of NaCN to sugar cane spirits also leads to urethane formation, although with lower rate constant compared to the one observed for KOCN
Formação de carbamato de etila em aguardentes recém-destiladas: proposta para seu controle
The commercial sugar cane spits redistillation decreased up to 92,5% their ethyl carbamate (EC) original content. Quantitative analysis of EC in 15 samples of sugar cane spirit (alembic and column), fresh distilled and collected in situ demonstrated that the urethane is formed mostly after distillation. The average time to achieve the complete EC formation is independent of the diffuse light presence and of the distillation apparatus used. The k obs for urethane formation at 25 ºC was calculate as (3,3 ± 0,5) x 10-5/s and the activation parameters are: ΔH‡ 34 kcal/mol; ΔS‡ - 69 cal/mol K; and ΔG‡ 54 kcal/mol