1,038 research outputs found
Differential constraints and exact solutions of nonlinear diffusion equations
The differential constraints are applied to obtain explicit solutions of
nonlinear diffusion equations. Certain linear determining equations with
parameters are used to find such differential constraints. They generalize the
determining equations used in the search for classical Lie symmetries
Accelerator Testing of the General Antiparticle Spectrometer, a Novel Approach to Indirect Dark Matter Detection
We report on recent accelerator testing of a prototype general antiparticle
spectrometer (GAPS). GAPS is a novel approach for indirect dark matter searches
that exploits the antideuterons produced in neutralino-neutralino
annihilations. GAPS captures these antideuterons into a target with the
subsequent formation of exotic atoms. These exotic atoms decay with the
emission of X-rays of precisely defined energy and a correlated pion signature
from nuclear annihilation. This signature uniquely characterizes the
antideuterons. Preliminary analysis of data from a prototype GAPS in an
antiproton beam at the KEK accelerator in Japan has confirmed the
multi-X-ray/pion star topology and indicated X-ray yields consistent with prior
expectations. Moreover our success in utilizing solid rather than gas targets
represents a significant simplification over our original approach and offers
potential gains in sensitivity through reduced dead mass in the target area.Comment: 18 pages, 9 figures, submitted to JCA
Diffusion and ballistic contributions of the interaction correction to the conductivity of a two-dimensional electron gas
The results of an experimental study of interaction quantum correction to the
conductivity of two-dimensional electron gas in AB semiconductor
quantum well heterostructures are presented for a wide range of
-parameter (), where is the transport
relaxation time. A comprehensive analysis of the magnetic field and temperature
dependences of the resistivity and the conductivity tensor components allows us
to separate the ballistic and diffusion parts of the correction. It is shown
that the ballistic part renormalizes in the main the electron mobility, whereas
the diffusion part contributes to the diagonal and does not to the off-diagonal
component of the conductivity tensor. We have experimentally found the values
of the Fermi-liquid parameters describing the electron-electron contribution to
the transport coefficients, which are found in a good agreement with the
theoretical results.Comment: 11 pages, 11 figure
Stability of a vacuum nonsingular black hole
This is the first of series of papers in which we investigate stability of
the spherically symmetric space-time with de Sitter center. Geometry,
asymptotically Schwarzschild for large and asymptotically de Sitter as
, describes a vacuum nonsingular black hole for and
particle-like self-gravitating structure for where a critical
value depends on the scale of the symmetry restoration to de Sitter
group in the origin. In this paper we address the question of stability of a
vacuum non-singular black hole with de Sitter center to external perturbations.
We specify first two types of geometries with and without changes of topology.
Then we derive the general equations for an arbitrary density profile and show
that in the whole range of the mass parameter objects described by
geometries with de Sitter center remain stable under axial perturbations. In
the case of the polar perturbations we find criteria of stability and study in
detail the case of the density profile
where is the density of de Sitter vacuum at the center, is de
Sitter radius and is the Schwarzschild radius.Comment: 18 pages, 8 figures, submitted to "Classical and Quantum Gravity
New variable separation approach: application to nonlinear diffusion equations
The concept of the derivative-dependent functional separable solution, as a
generalization to the functional separable solution, is proposed. As an
application, it is used to discuss the generalized nonlinear diffusion
equations based on the generalized conditional symmetry approach. As a
consequence, a complete list of canonical forms for such equations which admit
the derivative-dependent functional separable solutions is obtained and some
exact solutions to the resulting equations are described.Comment: 19 pages, 2 fig
Fate specification and tissue-specific cell cycle control of the <i>Caenorhabditis elegans</i> intestine
Coordination between cell fate specification and cell cycle control in multicellular organisms is essential to regulate cell numbers in tissues and organs during development, and its failure may lead to oncogenesis. In mammalian cells, as part of a general cell cycle checkpoint mechanism, the F-box protein β-transducin repeat-containing protein (β-TrCP) and the Skp1/Cul1/F-box complex control the periodic cell cycle fluctuations in abundance of the CDC25A and B phosphatases. Here, we find that the Caenorhabditis elegans β-TrCP orthologue LIN-23 regulates a progressive decline of CDC-25.1 abundance over several embryonic cell cycles and specifies cell number of one tissue, the embryonic intestine. The negative regulation of CDC-25.1 abundance by LIN-23 may be developmentally controlled because CDC-25.1 accumulates over time within the developing germline, where LIN-23 is also present. Concurrent with the destabilization of CDC-25.1, LIN-23 displays a spatially dynamic behavior in the embryo, periodically entering a nuclear compartment where CDC-25.1 is abundant
A Study of Cosmic Ray Secondaries Induced by the Mir Space Station Using AMS-01
The Alpha Magnetic Spectrometer (AMS-02) is a high energy particle physics
experiment that will study cosmic rays in the to range and will be installed on the International Space Station
(ISS) for at least 3 years. A first version of AMS-02, AMS-01, flew aboard the
space shuttle \emph{Discovery} from June 2 to June 12, 1998, and collected
cosmic ray triggers. Part of the \emph{Mir} space station was within the
AMS-01 field of view during the four day \emph{Mir} docking phase of this
flight. We have reconstructed an image of this part of the \emph{Mir} space
station using secondary and emissions from primary cosmic rays
interacting with \emph{Mir}. This is the first time this reconstruction was
performed in AMS-01, and it is important for understanding potential
backgrounds during the 3 year AMS-02 mission.Comment: To be submitted to NIM B Added material requested by referee. Minor
stylistic and grammer change
Protons in near earth orbit
The proton spectrum in the kinetic energy range 0.1 to 200 GeV was measured
by the Alpha Magnetic Spectrometer (AMS) during space shuttle flight STS-91 at
an altitude of 380 km. Above the geomagnetic cutoff the observed spectrum is
parameterized by a power law. Below the geomagnetic cutoff a substantial second
spectrum was observed concentrated at equatorial latitudes with a flux ~ 70
m^-2 sec^-1 sr^-1. Most of these second spectrum protons follow a complicated
trajectory and originate from a restricted geographic region.Comment: 19 pages, Latex, 7 .eps figure
Josephson supercurrent through a topological insulator surface state
Topological insulators are characterized by an insulating bulk with a finite
band gap and conducting edge or surface states, where charge carriers are
protected against backscattering. These states give rise to the quantum spin
Hall effect without an external magnetic field, where electrons with opposite
spins have opposite momentum at a given edge. The surface energy spectrum of a
threedimensional topological insulator is made up by an odd number of Dirac
cones with the spin locked to the momentum. The long-sought yet elusive
Majorana fermion is predicted to arise from a combination of a superconductor
and a topological insulator. An essential step in the hunt for this emergent
particle is the unequivocal observation of supercurrent in a topological phase.
Here, we present the first measurement of a Josephson supercurrent through a
topological insulator. Direct evidence for Josephson supercurrents in
superconductor (Nb) - topological insulator (Bi2Te3) - superconductor e-beam
fabricated junctions is provided by the observation of clear Shapiro steps
under microwave irradiation, and a Fraunhofer-type dependence of the critical
current on magnetic field. The dependence of the critical current on
temperature and length shows that the junctions are in the ballistic limit.
Shubnikov-de Haas oscillations in magnetic fields up to 30 T reveal a
topologically non-trivial two-dimensional surface state. We argue that the
ballistic Josephson current is hosted by this surface state despite the fact
that the normal state transport is dominated by diffusive bulk conductivity.
The lateral Nb-Bi2Te3-Nb junctions hence provide prospects for the realization
of devices supporting Majorana fermions
Search for antihelium in cosmic rays
The Alpha Magnetic Spectrometer (AMS) was flown on the space shuttle
Discovery during flight STS-91 in a 51.7 degree orbit at altitudes between 320
and 390 km. A total of 2.86 * 10^6 helium nuclei were observed in the rigidity
range 1 to 140 GV. No antihelium nuclei were detected at any rigidity. An upper
limit on the flux ratio of antihelium to helium of < 1.1 * 10^-6 is obtained.Comment: 18 pages, Latex, 9 .eps figure
- …
