1,695 research outputs found

    High-energy Atmospheric Muon Flux Expected at India-Based Neutrino Observatory

    Full text link
    We calculate the zenith-angle dependence of conventional and prompt high-energy muon fluxes at India-Based Neutrino Observatory (INO) depth. This study demonstrates a possibility to discriminate models of the charm hadroproduction including the low-x QCD behaviour of hadronic cross-sections relevant at very high energies.Comment: 10 pages. 8 figures, 3 table

    Progresses in the validation of the FLUKA atmospheric neutrino flux calculations

    Get PDF
    The FLUKA calculation of the atmospheric neutrino fluxes have been cross-checked by comparing predictions on lepton fluxes in atmosphere to experimental data. The dependence of predicted neutrino fluxes on the shape and normalization of primary spectrum is also investigatedComment: Presented at TAUP2001 (Sep. 8-12, Assergi, Italy). 5 pages, 1 figur

    Gamma-hadron families and scaling violation

    Get PDF
    For three different interaction models we have simulated gamma-hadron families, including the detector (Pamir emulsion chamber) response. Rates of gamma families, hadrons, and hadron-gamma ratios were compared with experiments

    Position and velocity space diffusion of test particles in stochastic electromagnetic fields

    Full text link
    The two--dimensional diffusive dynamics of test particles in a random electromagnetic field is studied. The synthetic electromagnetic fluctuations are generated through randomly placed magnetised ``clouds'' oscillating with a frequency ω\omega. We investigate the mean square displacements of particles in both position and velocity spaces. As ω\omega increases the particles undergo standard (Brownian--like) motion, anomalous diffusion and ballistic motion in position space. Although in general the diffusion properties in velocity space are not trivially related to those in position space, we find that energization is present only when particles display anomalous diffusion in position space. The anomalous character of the diffusion is only in the non--standard values of the scaling exponents while the process is Gaussian.Comment: 10 pages, 4 figure

    Asymptotic behaviour of the total cross section of p-p scattering and the Akeno cosmic ray data

    Full text link
    I present a new determination of the total cross section for proton-proton collisions from the recent Akeno results on absorption of the cosmic ray protons in the p-Air collisions. Extrapolation to the SSC energy suggests σtot(pp)(160170)mb\sigma_{tot}(p-p) \approx (160-170) mb. I also comment on a possible sensitivity of the p-Air cross section determinations to assumptions on the inelasticity of nuclear collisions at high energy.Comment: . 6 pages, 0 figure

    Probing Pseudo-Dirac Neutrino through Detection of Neutrino Induced Muons from GRB Neutrinos

    Full text link
    The possibility to verify the pseudo-Dirac nature of neutrinos is investigated here via the detection of ultra high energy neutrinos from distant cosmological objects like GRBs. The very long baseline and the energy range from \sim TeV to \sim EeV for such neutrinos invokes the likelihood to probe very small pseude-Dirac splittings. The expected secondary muons from such neutrinos that can be detected by a kilometer scale detector such as ICECUBE is calculated. The pseudo-Dirac nature, if exists, will show a considerable departure from flavour oscillation scenario in the total yield of the secondary muons induced by such neutrinos.Comment: 11 pages, 3figure

    Constraints on the origin of the ultra-high energy cosmic-rays using cosmic diffuse neutrino flux limits: An analytical approach

    Full text link
    Astrophysical neutrinos are expected to be produced in the interactions of ultra-high energy cosmic-rays with surrounding photons. The fluxes of the astrophysical neutrinos are highly dependent on the characteristics of the cosmic-ray sources, such as their cosmological distributions. We study possible constraints on the properties of cosmic-ray sources in a model-independent way using experimentally obtained diffuse neutrino flux above 100 PeV. The semi-analytic formula is derived to estimate the cosmogenic neutrino fluxes as functions of source evolution parameter and source extension in redshift. The obtained formula converts the upper-limits on the neutrino fluxes into the constraints on the cosmic-ray sources. It is found that the recently obtained upper-limit on the cosmogenic neutrinos by IceCube constrains the scenarios with strongly evolving ultra-high energy cosmic-ray sources, and the future limits from an 1 km^3 scale detector are able to further constrain the ultra-high energy cosmic-rays sources with evolutions comparable to the cosmic star formation rate.Comment: 9 pages, 3 figures and 1 table. Accepted by Phys. Rev.

    Flux of Atmospheric Neutrinos

    Get PDF
    Atmospheric neutrinos produced by cosmic-ray interactions in the atmosphere are of interest for several reasons. As a beam for studies of neutrino oscillations they cover a range of parameter space hitherto unexplored by accelerator neutrino beams. The atmospheric neutrinos also constitute an important background and calibration beam for neutrino astronomy and for the search for proton decay and other rare processes. Here we review the literature on calculations of atmospheric neutrinos over the full range of energy, but with particular attention to the aspects important for neutrino oscillations. Our goal is to assess how well the properties of atmospheric neutrinos are known at present.Comment: 68 pages, 26 figures. With permission from the Annual Review of Nuclear & Particle Science. Final version of this material is scheduled to appear in the Annual Review of Nuclear & Particle Science Vol. 52, to be published in December 2002 by Annual Reviews (http://annualreviews.org

    Neutrino production through hadronic cascades in AGN accretion disks

    Full text link
    We consider the production of neutrinos in active galactic nuclei (AGN) through hadronic cascades. The initial, high energy nucleons are accelerated in a source above the accretion disk around the central black hole. From the source, the particles diffuse back to the disk and initiate hadronic cascades. The observable output from the cascade are electromagnetic radiation and neutrinos. We use the observed diffuse background X-ray luminosity, which presumably results {}from this process, to predict the diffuse neutrino flux close to existing limits from the Frejus experiment. The resulting neutrino spectrum is E2E^{-2} down to the \GeV region. We discuss modifications of this scenario which reduce the predicted neutrino flux.Comment: 12 Pages, LaTeX, TK 92 0

    TeV Gamma Rays from Geminga and the Origin of the GeV Positron Excess

    Get PDF
    The Geminga pulsar has long been one of the most intriguing MeV-GeV gamma-ray point sources. We examine the implications of the recent Milagro detection of extended, multi-TeV gamma-ray emission from Geminga, finding that this reveals the existence of an ancient, powerful cosmic-ray accelerator that can plausibly account for the multi-GeV positron excess that has evaded explanation. We explore a number of testable predictions for gamma-ray and electron/positron experiments (up to ~100 TeV) that can confirm the first "direct" detection of a cosmic-ray source.Comment: 4 pages and 3 figures; Minor revisions, accepted for publication in Physical Review Letter
    corecore