11 research outputs found

    Current Approaches in Immunoassay Methods Focus on Skeletal Muscle Proteins

    Get PDF
    The skeletal muscle is a complex tissue that represents most of the muscle tissue in mammals and plays a key role in health and in the body’s function. It is a heterogeneous tissue whose contractile and metabolic functions depend on type, size, and quality of a large number of proteins. The multitude of proteins, the relationships that exist between them, and functional changes that occur in different muscle pathologies make their investigation to be challenged. In this chapter, current approaches in proteomic studies, its application, specific technical advice, and recent progress of the most important techniques based on antigen-antibody interactions used for the analysis of muscle proteins involved in different muscle diseases are presented

    Introductory Chapter: Muscular Dystrophy and Potential Therapeutic Alternatives

    Get PDF

    Clinical and Molecular Diagnosis in Muscular Dystrophies

    Get PDF
    Muscular dystrophies are a diverse group of inherited muscle disorders with a wide range of clinical manifestations from a severe form with early onset and early death to adult forms with later onset and minimal clinical manifestation that do not affect life-span. Overlapping clinical symptoms and the multitude of genes that need to be analyzed for an accurate characterization make the diagnosis hard. In next-generation sequencing era, a lot of used assay in molecular diagnostics must be taken into consideration for muscular dystrophy diagnosis. However, for more accurate diagnosis, muscle protein expressions analysis may have prognostic value. In this chapter, we present the most important clinical and laboratory findings in the most common forms of muscular dystrophies and molecular diagnostic approaches for a more accurate diagnosis

    EKSTRAK ETANOL DAUN KELOR (Moringa oleifera Lam.) SEBAGAI ANTIOKSIDAN DALAM PENGENCER SEMEN BABI LANDRACE BERBASIS AIR BUAH LONTAR

    Get PDF
    This study aims to determine the antioxidant effect of the ethanol extract of the leaves of Moringa (Moringa oleifera Lam.) In water diluent palm fruit of the quality of landrace pig spermatozoa. This study uses a Completely Randomized Design (CRD) with 5 treatments, 1 control dan 4 repetitions and observation of the motility and viability of spermatozoa performed every 2 hours until a decline in the percentage motility of at least 40%. The cement used in the Laboratory of Technical Services Unit for Breeding and Forage at Tarus, Kupang. Escrow done every two weeks from the male landrace pigs who have experienced sexual maturity. Landrace pig semen storage results were evaluated macroscopically and microscopically. Good quality cement had ≥70% motility, concentration ≥200x106 sel spermatozoa/ml and abnormalities of ≤20%. Cement is added to the water diluent palm fruit then added with antioxidants. Antioxidants should be added during the storage process, sperm metabolic activity produces free radicals that can degrade the quality of spermatozoa. Moringa leaves (Moringa oleifera Lam.) Is one of the antioxidants that can be used to counteract free radicals. Moringa leaves (Moringa oleifera Lam.) Is added to the water diluent palm fruit with graded doses are 1% (P1), 2% (P2), 3% (P3), 4% (P4) and 5% (P5). The results of this study indicate a dose of 1% (P1) is the best dosage to maintain the quality of the landrace pig spermatozoa of 66.25 ± 2.39 motility and viability of spermatozoa sebesar 78.00% ± 1.82%, which is stored at room temperature 22º C

    The Potential Benefits of Drug-Repositioning in Muscular Dystrophies

    Get PDF
    Muscular dystrophies (MDs) are a complex group of rare neuromuscular disorders caused by genetic mutations that progressively weaken the muscles, resulting in an increasing level of disability. The underlying cause of these conditions consists of mutations in the genes in charge of a person’s muscle composition and functionality. MD has no cure, but medications and therapy can help control symptoms and slow the disease’s progression. Effective treatments have yet to be developed, despite the identification of the genetic origins and a thorough knowledge of the pathophysiological alterations that these illnesses induce. In this scenario, there is an urgent need for novel therapeutic options for these severe illnesses, and drug repositioning might be one feasible answer. In other words, drug repositioning/repurposing is an accelerated method of developing novel pharmaceuticals since the new indication is based on previously accessible safety, pharmacokinetic, and manufacturing data. This is particularly crucial for individuals with life-threatening illnesses such as MDs, who cannot wait for a conventional medication development cycle. This chapter aims to review the challenges and opportunities of drug-repositioning in a variety of MDs to establish novel treatment approaches for these incurable diseases

    Immunoassay Techniques Highlighting Biomarkers in Immunogenetic Diseases

    Get PDF
    Diagnosis of autoimmune diseases is crucial for the clinician and the patient alike. The immunoassay techniques most commonly used for this purpose are immunohistochemistry, ELISA, and Western blotting. For the detection of more specific biomarkers or the discovery of new ones for diagnostic purposes and as therapeutic targets, microarray techniques are increasingly used, for example, protein microarray, Luminex, and in recent years, surface plasmon resonance imaging. All of these technologies have undergone changes over time, making them easier to use. Similar technologies have been invented but responding to specific requirements for both diagnostic and research purposes. The goals are to study more analytes in the same sample, in a shorter time, and with increased accuracy. The reproducibility and reliability of the results are also a target pursued by manufacturers. In this chapter, we present these technologies and their utility in the diagnosis of immunogenetic diseases

    Delivery of oligonucleotide‐based therapeutics: challenges and opportunities

    Get PDF
    Nucleic acid‐based therapeutics that regulate gene expression have been developed towards clinical use at a steady pace for several decades, but in recent years the field has been accelerating. To date, there are 11 marketed products based on antisense oligonucleotides, aptamers and small interfering RNAs, and many others are in the pipeline for both academia and industry. A major technology trigger for this development has been progress in oligonucleotide chemistry to improve the drug properties and reduce cost of goods, but the main hurdle for the application to a wider range of disorders is delivery to target tissues. The adoption of delivery technologies, such as conjugates or nanoparticles, has been a game changer for many therapeutic indications, but many others are still awaiting their eureka moment. Here, we cover the variety of methods developed to deliver nucleic acid‐based therapeutics across biological barriers and the model systems used to test them. We discuss important safety considerations and regulatory requirements for synthetic oligonucleotide chemistries and the hurdles for translating laboratory breakthroughs to the clinic. Recent advances in the delivery of nucleic acid‐based therapeutics and in the development of model systems, as well as safety considerations and regulatory requirements for synthetic oligonucleotide chemistries are discussed in this review on oligonucleotide‐based therapeutics

    Delivery of oligonucleotide-based therapeutics : challenges and opportunities

    Get PDF
    Funding Information: This work was supported by funding from Cooperation of Science and Technology (COST) Action CA17103 (networking grant to V.A-G). V.A-G holds a Miguel Servet Fellowship from the ISCIII [grant reference CPII17/00004] that is part-funded by the European Regional Development Fund (ERDF/FEDER) and also acknowledges funding from Ikerbasque (Basque Foundation for Science). S.M.H is funded by the Medical Research Council and Muscular Dystrophy UK. A.A-R receives funding from amongst others the Duchenne Parent Project, Spieren voor Spieren, the Prinses Beatrix Spierfonds, Duchenne UK and through Horizon2020 project BIND. A.G and R.W.J.C are supported by several foundations including the Algemene Nederlandse Vereniging ter Voorkoming van Blindheid, Stichting Blinden-Penning, Landelijke Stichting voor Blinden en Slechtzienden, Stichting Oogfonds Nederland, Stichting Macula Degeneratie Fonds, and Stichting Retina Nederland Fonds (who contributed through UitZicht 2015-31 and 2018-21), together with the Rotterdamse Stichting Blindenbelangen, Stichting Blindenhulp, Stichting tot Verbetering van het Lot der Blinden, Stichting voor Ooglijders, and Stichting Dowilvo; as well as the Foundation Fighting Blindness USA, grant no. PPA-0517-0717-RAD. R.A.M.B is supported by Hersenstichting Nederland Grant DR-2018-00253. G.G. is supported by Ministry of Research and Innovation in Romania/National Program 31N/2016/PN 16.22.02.05. S.A is supported by Project PTDC/BBB-BMD/6301/2014 (Funda??o para a Ci?ncia e a Tecnologia?MCTES, Portugal). L.R.D. is supported by Fundaci?n Ram?n Areces Grant XVII CN and Spanish Ministry of Science and Innovation (MICINN, grant PID2019-105344RB-I00). T.L is supported by Estonian Research Council grant PSG226. S.K is supported by the Friedrich-Baur-Stiftung. C.F is funded by The Danish Council for Independent Research, Technology and Production Sciences (grant number DFF-4184-00422). W.vRM is supported by ZonMw Programme Translational Research 2 [Project number 446002002], Campaign Team Huntington and AFM Telethon [Project number 20577]. S.E.B is supported by the H2020 projects B-SMART, Grant number 721058, and REFINE, Grant number 761104. A.T.G is supported by the Institut National de la sant? et la recherche m?dicale (INSERM) and the Association Monegasque contre les myopathies (AMM). L.E. is founded by the Association Monegasque contre les myopathies (AMM). Publisher Copyright: © 2021 The Authors. Published under the terms of the CC BY 4.0 licenseNucleic acid-based therapeutics that regulate gene expression have been developed towards clinical use at a steady pace for several decades, but in recent years the field has been accelerating. To date, there are 11 marketed products based on antisense oligonucleotides, aptamers and small interfering RNAs, and many others are in the pipeline for both academia and industry. A major technology trigger for this development has been progress in oligonucleotide chemistry to improve the drug properties and reduce cost of goods, but the main hurdle for the application to a wider range of disorders is delivery to target tissues. The adoption of delivery technologies, such as conjugates or nanoparticles, has been a game changer for many therapeutic indications, but many others are still awaiting their eureka moment. Here, we cover the variety of methods developed to deliver nucleic acid-based therapeutics across biological barriers and the model systems used to test them. We discuss important safety considerations and regulatory requirements for synthetic oligonucleotide chemistries and the hurdles for translating laboratory breakthroughs to the clinic. Recent advances in the delivery of nucleic acid-based therapeutics and in the development of model systems, as well as safety considerations and regulatory requirements for synthetic oligonucleotide chemistries are discussed in this review on oligonucleotide-based therapeutics.publishersversionPeer reviewe

    Skeletal Muscle Stem Cells in Aging: Asymmetric/Symmetric Division Switching

    No full text
    In aged muscle, satellite cells’ symmetric and asymmetric divisions are impaired, and intrinsic and extrinsic complex mechanisms govern these processes. This review presents many updated aspects regarding muscle stem cells’ fate in normal and aging conditions. The balance between self-renewal and commitment divisions contributes to muscle regeneration, muscle homeostasis, aging, and disease. Stimulating muscle regeneration in aging could be a therapeutic target, but there is still a need to understand the many mechanisms that influence each other in satellite cells and their niche. We highlight here the general outlines regarding satellite cell divisions, the primary markers present in muscle stem cells, the aging aspects concerning signaling pathways involved in symmetric/asymmetric divisions, the regenerative capacity of satellite cells and their niche alteration in senescent muscle, genetics and epigenetics mechanisms implied in satellite cells aging and exercise effect on muscle regeneration in the elderly

    Application of Droplet Digital PCR Technology in Muscular Dystrophies Research

    No full text
    Although they are considered rare disorders, muscular dystrophies have a strong impact on people’s health. Increased disease severity with age, frequently accompanied by the loss of ability to walk in some people, and the lack of treatment, have directed the researchers towards the development of more effective therapeutic strategies aimed to improve the quality of life and life expectancy, slow down the progression, and delay the onset or convert a severe phenotype into a milder one. Improved understanding of the complex pathology of these diseases together with the tremendous advances in molecular biology technologies has led to personalized therapeutic procedures. Different approaches that are currently under extensive investigation require more efficient, sensitive, and less invasive methods. Due to its remarkable analytical sensitivity, droplet digital PCR has become a promising tool for accurate measurement of biomarkers that monitor disease progression and quantification of various therapeutic efficiency and can be considered a tool for non-invasive prenatal diagnosis and newborn screening. Here, we summarize the recent applications of droplet digital PCR in muscular dystrophy research and discuss the factors that should be considered to get the best performance with this technology
    corecore