46 research outputs found

    Selective Conscientious Objection

    Get PDF

    The World Court And The Bomb: Nuremberg And Babel At The Hague

    Get PDF
    On July 8, 1996, the World Court, the International Court of Justice at the Hague, banned the bomb

    Livelihood and vulnerability in the wake of Typhoon Yolanda: lessons of community and resilience

    Get PDF
    Livelihood strategies that are crafted in ‘extra-ordinary’ post-disaster conditions should also be able to function once some semblance of normalcy has resumed. This article aims to show that the vulnerability experienced in relation to Typhoon Yolanda was, and continues to be, directly linked to inadequate livelihood assets and opportunities. We examine the extent to which various livelihood strategies lessened vulnerability post-Typhoon Yolanda and argue that creating conditions under which disaster survivors have the freedom to pursue sustainable livelihood is essential in order to foster resilience and reduce vulnerability against future disasters. We offer suggestions to improve future relief efforts, including suggestions made by the survivors themselves. We caution against rehabilitation strategies that knowingly or unknowingly, resurrect pre-disaster vulnerability. Strategies that foster dependency, fail to appreciate local political or ecological conditions or undermine cooperation and cohesion in already vulnerable communities will be bound to fail. Some of the livelihood strategies that we observed post-Typhoon Yolanda failed on some or all of these points. It is important for future policy that these failings are addressed

    Non Mycobacterial Virulence Genes in the Genome of the Emerging Pathogen Mycobacterium abscessus

    Get PDF
    Mycobacterium abscessus is an emerging rapidly growing mycobacterium (RGM) causing a pseudotuberculous lung disease to which patients with cystic fibrosis (CF) are particularly susceptible. We report here its complete genome sequence. The genome of M. abscessus (CIP 104536T) consists of a 5,067,172-bp circular chromosome including 4920 predicted coding sequences (CDS), an 81-kb full-length prophage and 5 IS elements, and a 23-kb mercury resistance plasmid almost identical to pMM23 from Mycobacterium marinum. The chromosome encodes many virulence proteins and virulence protein families absent or present in only small numbers in the model RGM species Mycobacterium smegmatis. Many of these proteins are encoded by genes belonging to a “mycobacterial” gene pool (e.g. PE and PPE proteins, MCE and YrbE proteins, lipoprotein LpqH precursors). However, many others (e.g. phospholipase C, MgtC, MsrA, ABC Fe(3+) transporter) appear to have been horizontally acquired from distantly related environmental bacteria with a high G+C content, mostly actinobacteria (e.g. Rhodococcus sp., Streptomyces sp.) and pseudomonads. We also identified several metabolic regions acquired from actinobacteria and pseudomonads (relating to phenazine biosynthesis, homogentisate catabolism, phenylacetic acid degradation, DNA degradation) not present in the M. smegmatis genome. Many of the “non mycobacterial” factors detected in M. abscessus are also present in two of the pathogens most frequently isolated from CF patients, Pseudomonas aeruginosa and Burkholderia cepacia. This study elucidates the genetic basis of the unique pathogenicity of M. abscessus among RGM, and raises the question of similar mechanisms of pathogenicity shared by unrelated organisms in CF patients

    Invasive Extravillous Trophoblasts Restrict Intracellular Growth and Spread of Listeria monocytogenes

    Get PDF
    Listeria monocytogenes is a facultative intracellular bacterial pathogen that can infect the placenta, a chimeric organ made of maternal and fetal cells. Extravillous trophoblasts (EVT) are specialized fetal cells that invade the uterine implantation site, where they come into direct contact with maternal cells. We have shown previously that EVT are the preferred site of initial placental infection. In this report, we infected primary human EVT with L. monocytogenes. EVT eliminated ∼80% of intracellular bacteria over 24-hours. Bacteria were unable to escape into the cytoplasm and remained confined to vacuolar compartments that became acidified and co-localized with LAMP1, consistent with bacterial degradation in lysosomes. In human placental organ cultures bacterial vacuolar escape rates differed between specific trophoblast subpopulations. The most invasive EVT—those that would be in direct contact with maternal cells in vivo—had lower escape rates than trophoblasts that were surrounded by fetal cells and tissues. Our results suggest that EVT present a bottleneck in the spread of L. monocytogenes from mother to fetus by inhibiting vacuolar escape, and thus intracellular bacterial growth. However, if L. monocytogenes is able to spread beyond EVT it can find a more hospitable environment. Our results elucidate a novel aspect of the maternal-fetal barrier

    Magma plumbing systems: a geophysical perspective

    Get PDF
    Over the last few decades, significant advances in using geophysical techniques to image the structure of magma plumbing systems have enabled the identification of zones of melt accumulation, crystal mush development, and magma migration. Combining advanced geophysical observations with petrological and geochemical data has arguably revolutionised our understanding of, and afforded exciting new insights into, the development of entire magma plumbing systems. However, divisions between the scales and physical settings over which these geophysical, petrological, and geochemical methods are applied still remain. To characterise some of these differences and promote the benefits of further integration between these methodologies, we provide a review of geophysical techniques and discuss how they can be utilised to provide a structural context for and place physical limits on the chemical evolution of magma plumbing systems. For example, we examine how Interferometric Synthetic Aperture Radar (InSAR), coupled with Global Positioning System (GPS) and Global Navigation Satellite System (GNSS) data, and seismicity may be used to track magma migration in near real-time. We also discuss how seismic imaging, gravimetry and electromagnetic data can identify contemporary melt zones, magma reservoirs and/or crystal mushes. These techniques complement seismic reflection data and rock magnetic analyses that delimit the structure and emplacement of ancient magma plumbing systems. For each of these techniques, with the addition of full-waveform inversion (FWI), the use of Unmanned Aerial Vehicles (UAVs) and the integration of geophysics with numerical modelling, we discuss potential future directions. We show that approaching problems concerning magma plumbing systems from an integrated petrological, geochemical, and geophysical perspective will undoubtedly yield important scientific advances, providing exciting future opportunities for the volcanological community

    Selective Conscientious Objection

    Get PDF

    Physiological effects of invasive ventilation with neurally adjusted ventilatory assist (NAVA) in a crossover study

    No full text
    International audienceBACKGROUND: Neurally Adjusted Ventilatory Assist (NAVA) is a mode of assisted mechanical ventilation that delivers inspiratory pressure proportionally to the electrical activity of the diaphragm. To date, no pediatric study has focused on the effects of NAVA on hemodynamic parameters. This physiologic study with a randomized cross-over design compared hemodynamic parameters when NAVA or conventional ventilation (CV) was applied.METHODS: After a baseline period, infants received NAVA and CV in a randomized order during two consecutive 30-min periods. During the last 10 min of each period, respiratory and hemodynamic parameters were collected. No changes in PEEP, FiO2, sedation or inotropic doses were allowed during these two periods. The challenge was to keep minute volumes constant, with no changes in blood CO2 levels and in pH that may affect the results.RESULTS: Six infants who had undergone cardiac surgery (mean age 7.8 ± 4.1 months) were studied after parental consent. Four of them had low central venous oxygen saturation (ScvO2 < 65 %). The ventilatory settings resulted in similar minute volumes (1.7 ± 0.4 vs. 1.6 ± 0.6 ml/kg, P = 0.67) and in similar tidal volumes respectively with NAVA and with CV. There were no statistically significant differences on blood pH levels between the two modes of ventilation (7.32 ± 0.02 vs. 7.32 ± 0.04, P = 0.34). Ventilation with NAVA delivered lower peak inspiratory pressures than with CV: -32.7 % (95 % CI: -48.2 to -17.1 %, P = 0.04). With regard to hemodynamics, systolic arterial pressures were higher using NAVA: +8.4 % (95 % CI: +3.3 to +13.6 %, P = 0.03). There were no statistically significant differences on cardiac index between the two modes of ventilation. However, all children with a low baseline ScvO2 (<65 %) tended to increase their cardiac index with NAVA compared to CV: 2.03 ± 0.30 vs. 1.91 ± 0.39 L/min.m2 (median ± interquartile, P = 0.07).CONCLUSIONS: This pilot study raises the hypothesis that NAVA could have beneficial effects on hemodynamics in children when compared to a conventional ventilatory mode that delivered identical PEEP and similar minute volumes.TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01490710 . Date of registration: December 7, 2011
    corecore