5 research outputs found

    Transcriptional dynamics of induced pluripotent stem cell differentiation into β cells reveals full endodermal commitment and homology with human islets.

    Get PDF
    Abstract Background aims Induced pluripotent stem cells (iPSCs) have the capacity to generate β cells in vitro, but the differentiation is incomplete and generates a variable percentage of off-target cells. Single-cell RNA sequencing offers the possibility of characterizing the transcriptional dynamics throughout differentiation and determining the identity of the final differentiation product. Methods Single-cell transcriptomics data were obtained from four stages across differentiation of iPSCs into β cells and from human donor islets. Results Clustering analysis revealed that iPSCs undertake a full endoderm commitment, and the obtained endocrine pancreatic cells have high homology with mature islets. The iPSC-derived β cells were devoid of pluripotent residual cells, and the differentiation was pancreas-specific, as it did not generate ectodermal or mesodermal cells. Pseudotime trajectory identified a dichotomic endocrine/non-endocrine cell fate and distinct subgroups in the endocrine branch. Conclusions Future efforts to produce β cells from iPSCs must aim not only to improve the resulting endocrine cell but also to avoid differentiation into non-pancreatic endoderm cells

    Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes

    Get PDF
    Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening

    Mobility in Unsupervised Word Embeddings for Knowledge Extraction—The Scholars’ Trajectories across Research Topics

    No full text
    In the knowledge discovery field of the Big Data domain the analysis of geographic positioning and mobility information plays a key role. At the same time, in the Natural Language Processing (NLP) domain pre-trained models such as BERT and word embedding algorithms such as Word2Vec enabled a rich encoding of words that allows mapping textual data into points of an arbitrary multi-dimensional space, in which the notion of proximity reflects an association among terms or topics. The main contribution of this paper is to show how analytical tools, traditionally adopted to deal with geographic data to measure the mobility of an agent in a time interval, can also be effectively applied to extract knowledge in a semantic realm, such as a semantic space of words and topics, looking for latent trajectories that can benefit the properties of neural network latent representations. As a case study, the Scopus database was queried about works of highly cited researchers in recent years. On this basis, we performed a dynamic analysis, for measuring the Radius of Gyration as an index of the mobility of researchers across scientific topics. The semantic space is built from the automatic analysis of the paper abstracts of each author. In particular, we evaluated two different methodologies to build the semantic space and we found that Word2Vec embeddings perform better than the BERT ones for this task. Finally, The scholars’ trajectories show some latent properties of this model, which also represent new scientific contributions of this work. These properties include (i) the correlation between the scientific mobility and the achievement of scientific results, measured through the H-index; (ii) differences in the behavior of researchers working in different countries and subjects; and (iii) some interesting similarities between mobility patterns in this semantic realm and those typically observed in the case of human mobility

    Mobility in Unsupervised Word Embeddings for Knowledge Extraction—The Scholars’ Trajectories across Research Topics

    No full text
    In the knowledge discovery field of the Big Data domain the analysis of geographic positioning and mobility information plays a key role. At the same time, in the Natural Language Processing (NLP) domain pre-trained models such as BERT and word embedding algorithms such as Word2Vec enabled a rich encoding of words that allows mapping textual data into points of an arbitrary multi-dimensional space, in which the notion of proximity reflects an association among terms or topics. The main contribution of this paper is to show how analytical tools, traditionally adopted to deal with geographic data to measure the mobility of an agent in a time interval, can also be effectively applied to extract knowledge in a semantic realm, such as a semantic space of words and topics, looking for latent trajectories that can benefit the properties of neural network latent representations. As a case study, the Scopus database was queried about works of highly cited researchers in recent years. On this basis, we performed a dynamic analysis, for measuring the Radius of Gyration as an index of the mobility of researchers across scientific topics. The semantic space is built from the automatic analysis of the paper abstracts of each author. In particular, we evaluated two different methodologies to build the semantic space and we found that Word2Vec embeddings perform better than the BERT ones for this task. Finally, The scholars’ trajectories show some latent properties of this model, which also represent new scientific contributions of this work. These properties include (i) the correlation between the scientific mobility and the achievement of scientific results, measured through the H-index; (ii) differences in the behavior of researchers working in different countries and subjects; and (iii) some interesting similarities between mobility patterns in this semantic realm and those typically observed in the case of human mobility

    Table1_An Italian multicentre distributed data research network to study the use, effectiveness, and safety of immunosuppressive drugs in transplant patients: Framework and perspectives of the CESIT project.docx

    No full text
    The goal of post-transplant immunosuppressive drug therapy is to prevent organ rejection while minimizing drug toxicities. In clinical practice, a multidrug approach is commonly used and involves drugs with different mechanisms of action, including calcineurin inhibitors (CNI) (tacrolimus or cyclosporine), antimetabolite (antimet) (mycophenolate or azathioprine), inhibitors of mechanistic target of rapamycin (mTOR) (sirolimus or everolimus), and/or steroids. Although evidence based on several randomized clinical trials is available, the optimal immunosuppressive therapy has not been established and may vary among organ transplant settings. To improve the knowledge on this topic, a multiregional research network to Compare the Effectiveness and Safety of Immunosuppressive drugs in Transplant patients (CESIT) has been created with the financial support of the Italian Medicines Agency. In this article, we describe the development of this network, the framework that was designed to perform observational studies, and we also give an overview of the preliminary results that we have obtained. A multi-database transplant cohort was enrolled using a common data model based on healthcare claims data of four Italian regions (Lombardy, Veneto, Lazio, and Sardinia). Analytical datasets were created using an open-source tool for distributed analysis. To link the National Transplant Information System to the regional transplant cohorts, a semi-deterministic record linkage procedure was performed. Overall, 6,914 transplant patients from 2009–19 were identified: 4,029 (58.3%) for kidney, 2,219 (32.1%) for liver, 434 (6.3%) for heart, and 215 (3.1%) for lung. As expected, demographic and clinical characteristics showed considerable variability among organ settings. Although the triple therapy in terms of CNI + antimet/mTOR + steroids was widely dispensed for all settings (63.7% for kidney, 33.5% for liver, 53.3% for heart, and 63.7% for lung), differences in the active agents involved were detected. The CESIT network represents a great opportunity to study several aspects related to the use, safety, and effectiveness of post-transplant maintenance immunosuppressive therapy in real practice.</p
    corecore