48 research outputs found

    Host defense peptides identified in human apolipoprotein B as natural food bio-preservatives: Evaluation of their biosafety and digestibility

    Get PDF
    The employment of chemical agents in the food industry is raising several concerns by consumers and is leading to an increasing interest in natural food preservatives. Among alternatives, host defense peptides (HDPs) have attracted great interest for their ability to preserve food samples from contamination without altering their quality, taste, and organoleptic properties. Recently, we evaluated the applicability of ApoB-derived peptides as novel food bio-preservatives and demonstrated their ability to prevent chicken meat sample contamination when immobilized on chitosan films. To perform a further step towards the applicability of these peptides in the food field, here we evaluated peptides biosafety and digestibility. To do this, we used a multidisciplinary approach including the evaluation of the peptides' toxicity and antimicrobial activity, the analysis of resistance phenotype development, an in silico prediction of the peptides' susceptibility to proteases and the evaluation of the peptides' stability in simulated gastric and intestinal fluids. ApoB-derived peptides were found to be nontoxic when tested on human gastric carcinoma cells SNU-1 and on human colon-rectal adenocarcinoma cells HT-29, and not to induce resistance phenotype in Salmonella strains. Bioinformatic analyses showed that the peptides are susceptible to several proteases, as also confirmed by experiments in simulated gastric and intestinal fluids. Altogether these findings open interesting perspectives to the future applicability of ApoB-derived peptides as novel food biopreservatives

    Novel Antimicrobial Strategies to Prevent Biofilm Infections in Catheters after Radical Cystectomy: A Pilot Study

    Get PDF
    Catheter-associated infections in bladder cancer patients, following radical cystectomy or ureterocutaneostomy, are very frequent, and the development of antibiotic resistance poses great challenges for treating biofilm-based infections. Here, we characterized bacterial communities from catheters of patients who had undergone radical cystectomy for muscle-invasive bladder cancer. We evaluated the efficacy of conventional antibiotics, alone or combined with the human ApoB-derived antimicrobial peptide r(P)ApoBLAla, to treat ureteral catheter-colonizing bacterial communities on clinically isolated bacteria. Microbial communities adhering to indwelling catheters were collected during the patients' regular catheter change schedules (28 days) and extracted within 48 h. Living bacteria were characterized using selective media and biochemical assays. Biofilm growth and novel antimicrobial strategies were analyzed using confocal laser scanning microscopy. Statistical analyses confirmed the relevance of the biofilm reduction induced by conventional antibiotics (fosfomycin, ceftriaxone, ciprofloxacin, gentamicin, and tetracycline) and a well-characterized human antimicrobial peptide r(P)ApoBLAla (1:20 ratio, respectively). Catheters showed polymicrobial communities, with Enterobactericiae and Proteus isolates predominating. In all samples, we recorded a meaningful reduction in biofilms, in both biomass and thickness, upon treatment with the antimicrobial peptide r(P)ApoBLAla in combination with low concentrations of conventional antibiotics. The results suggest that combinations of conventional antibiotics and human antimicrobial peptides might synergistically counteract biofilm growth on ureteral catheters, suggesting novel avenues for preventing catheter-associated infections in patients who have undergone radical cystectomy and ureterocutaneostomy

    Insights into the interaction of the N-terminal amyloidogenic polypeptide of ApoA-I with model cellular membranes

    Get PDF
    BACKGROUND: About twenty variants of apolipoprotein A-I (ApoA-I) are associated to hereditary systemic amyloidoses. Although the molecular bases of this disease are still largely unknown, it has been hypothesized that ApoA-I proteolysis is a key event in pathogenesis, since it triggers the release of an N-terminal fragment (80-100 residue long) that misfolds to form amyloid deposits in peripheral organs and tissues. It is also known that cell membrane lipids play a key role in the fibrillogenic pathway. In the case of ApoA-I related amyloidosis caused by L174S mutation, the 93-residue N-terminal fragment of ApoA-I ([1-93]ApoA-I) was found to be the major constituent of ex vivo fibrils. METHODS: With the main goal to investigate the interaction of either [1-93]ApoA-I and ApoA-I with biomimetic membranes, we set-up an experimental system based on the Raman Tweezers methodology. We tested GUVs composed by two types of zwitterionic lipids with a different fluidity degree, i.e. dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC). RESULTS: We found that [1-93]ApoA-I induces conformational disorder in an ordered lipid bilayer. When interacting with fluid phases, instead, the fragment was found to be able to penetrate the membrane bilayer inducing an alignment of lipid chains. CONCLUSIONS: The interaction features of [1-93]ApoA-I with biomimetic membranes strongly depend on the lipid phase. Full-length ApoA-I was found to have similar effects, even if significantly less pronounced. GENERAL SIGNIFICANCE: Our observations shed light on still largely unknown molecular bases of ApoA-I fibrillogenic domain interaction with membranes

    Human Cryptic Host Defence Peptide {GVF}27 Exhibits Anti-Infective Properties against Biofilm Forming Members of the Burkholderia cepacia Complex

    Get PDF
    Therapeutic solutions to counter Burkholderia cepacia complex (Bcc) bacteria are challenging due to their intrinsically high level of antibiotic resistance. Bcc organisms display a variety of potential virulence factors, have a distinct lipopolysaccharide naturally implicated in antimicrobial resistance. and are able to form biofilms, which may further protect them from both host defence peptides (HDPs) and antibiotics. Here, we report the promising anti-biofilm and immunomodulatory activities of human HDP GVF27 on two of the most clinically relevant Bcc members, Burkholderia multivorans and Burkholderia cenocepacia. The effects of synthetic and labelled GVF27 were tested on B. cenocepacia and B. multivorans biofilms, at three different stages of formation, by confocal laser scanning microscopy (CLSM). Assays on bacterial cultures and on human monocytes challenged with B. cenocepacia LPS were also performed. GVF27 exerts, at different stages of formation, antibiofilm effects towards both Bcc strains, a significant propensity to function in combination with ciprofloxacin, a relevant affinity for LPSs isolated from B. cenocepacia as well as a good propensity to mitigate the release of pro-inflammatory cytokines in human cells pre-treated with the same endotoxin. Overall, all these findings contribute to the elucidation of the main features that a good therapeutic agent directed against these extremely leathery biofilm-forming bacteria should possess

    A New Orbiting Deployable System for Small Satellite Observations for Ecology and Earth Observation

    Get PDF
    In this paper, we present several study cases focused on marine, oceanographic, and atmospheric environments, which would greatly benefit from the use of a deployable system for small satellite observations. As opposed to the large standard ones, small satellites have become an effective and affordable alternative access to space, owing to their lower costs, innovative design and technology, and higher revisiting times, when launched in a constellation configuration. One of the biggest challenges is created by the small satellite instrumentation working in the visible (VIS), infrared (IR), and microwave (MW) spectral ranges, for which the resolution of the acquired data depends on the physical dimension of the telescope and the antenna collecting the signal. In this respect, a deployable payload, fitting the limited size and mass imposed by the small satellite architecture, once unfolded in space, can reach performances similar to those of larger satellites. In this study, we show how ecology and Earth Observations can benefit from data acquired by small satellites, and how they can be further improved thanks to deployable payloads. We focus on DORA—Deployable Optics for Remote sensing Applications—in the VIS to TIR spectral range, and on a planned application in the MW spectral range, and we carry out a radiometric analysis to verify its performances for Earth Observation studies

    Safety and Efficacy of Subcutaneous Rituximab in Previously Untreated Patients with CD20+ Diffuse Large B-Cell Lymphoma or Follicular Lymphoma: Results from an Italian Phase IIIb Study

    Get PDF
    Subcutaneous (SC) rituximab may be beneficial in terms of convenience and tolerability, with potentially fewer and less severe administration-related reactions (ARRs) compared to the intravenous (IV) form. This report presents the results of a phase IIIb study conducted in Italy. The study included adult patients with CD20+ DLBCL or FL having received at least one full dose of IV RTX 375 mg/m2 during induction or maintenance. Patients on induction received ≥4 cycles of RTX SC 1400 mg plus standard chemotherapy and FL patients on maintenance received ≥6 cycles of RTX SC. Overall, 159 patients (73 DLBCL, 86 FL) were enrolled: 103 (54 DLBCL, 49 FL) completed induction and 42 patients with FL completed 12 maintenance cycles. ARRs were reported in 10 patients (6.3%), 3 (4.2%) with DLBCL and 7 (8.1%) with FL, all of mild severity, and resolved without dose delay/discontinuation. Treatment-emergent adverse events (TEAEs) and serious adverse events occurred in 41 (25.9%) and 14 patients (8.9%), respectively. Two patients with DLBCL had fatal events: Klebsiella infection (related to rituximab) and septic shock (related to chemotherapy). Neutropenia (14 patients, 8.9%) was the most common treatment-related TEAE. Two patients with DLBCL (2.8%) and 6 with FL (7.0%) discontinued rituximab due to TEAEs. 65.2% and 69.7% of patients with DLBCL and 67.9% and 73.6% of patients with FL had complete response (CR) and CR unconfirmed, respectively. The median time to events (EFS, PFS, and OS) was not estimable due to the low rate of events. At a median follow-up of 29.5 and 47.8 months in patients with DLBCL and FL, respectively, EFS, PFS, and OS were 70.8%, 70.8%, and 80.6% in patients with DLBCL and 77.9%, 77.9%, and 95.3% in patients with FL, respectively. The switch from IV to SC rituximab in patients with DLBCL and FL was associated with low risk of ARRs and satisfactory response in both groups. This trial was registered with NCT01987505

    La Philosophie De Camus

    No full text

    The Parkinsonian gait spatiotemporal parameters quantified by a single inertial sensor before and after automated mechanical peripheral stimulation treatment

    Get PDF
    This study aims to evaluate the change in gait spatiotemporal parameters in subjects with Parkinson’s disease (PD) before and after Automated Mechanical Peripheral Stimulation (AMPS) treatment. Thirty-five subjects with PD and 35 healthy age-matched subjects took part in this study. A dedicated medical device (Gondola) was used to administer the AMPS. All patients with PD were treated in off levodopa phase and their gait performances were evaluated by an inertial measurement system before and after the intervention. The one-way ANOVA for repeated measures was performed to assess the differences between pre- and post-AMPS and the one-way ANOVA to assess the differences between PD patients and the control group. Spearman’s correlations assessed the associations between patients with PD clinical status (H&Y) and the percentage of improvement of the gait variables after AMPS (α<0.05 for all tests). The PD group had an improvement of 14.85% in the stride length; 14.77% in the gait velocity; and 29.91% in the gait propulsion. The correlation results showed that the higher the H&Y classification, the higher the stride length percentage of improvement. The treatment based on AMPS intervention seems to induce a better performance in the gait pattern of PD patients, mainly in intermediate and advanced stages of the condition

    Soil fertility promotes decomposition rate of nutrient poor, but not nutrient rich litter through nitrogen transfer

    No full text
    Background and aims Litter decomposition is a critical process in terrestrial ecosystems and understanding the effects of soil fertility on the litter decay rate is of great ecological relevance. Here we test the hypothesis that N transfer from soil to litter will promote the decay rate of N poor but not N rich litter types. Methods Ten organic substrates, encompassing a wide range of biochemical quality in terms of C/N and lignin/N ratios, were decomposed in microcosms over three soil types with different N content, but inoculated with the same microbiome. Organic substrates were characterized for mass loss, C and N content to assess N transfer from soil to litter. Results The decay rate response to soil fertility was related to their initial N content: positive for substrates with little initial N content and not significant for N rich plant residues. A significant N transfer, generally larger from N rich soil to N poor substrates, was found. Litter C/N and lignin/N ratios showed variable relationships with the litter decay according with the soil fertility gradient, with positive and negative correlations in N rich and N poor soils, respectively. Conclusions Our study demonstrated that the decomposition of N rich litter proceeded irrespective of soil fertility while the decay rate of N poor substrates, either lignin poor or rich, was controlled by soil fertility likely as a result of N transfer. Litter C/N and lignin/N ratios were reliable indicators of litter quality to predict their decay rate in N poor soil, but not in N rich soils
    corecore