10,194 research outputs found

    Transverse Spin Studies with STAR at RHIC

    Get PDF
    STAR has observed sizable transverse single-spin asymmetries for inclusive pi^0 production at forward rapidity in p+p collisions at sqrt{s}=200 GeV. These asymmetries may arise from either the Sivers or Collins effect. Studies are underway during the current RHIC run to elucidate the dynamics that underlie these single-spin asymmetries. Additional measurements are underway to search for the Sivers effect in mid-rapidity di-jet production.Comment: 4 pages, 3 figures, to appear in DIS2006 proceeding

    d+Au Collisions at STAR

    Full text link
    STAR has measured forward pi^0 production in p+p and d+Au collisions at sqrt{s_{NN}}=200 GeV. The p+p yield generally agrees with NLO pQCD calculations. The d+Au yield is strongly suppressed at =4.0, well below shadowing expectations. Exploratory measurements of azimuthal correlations between forward pi^0 and mid-rapidity charged hadrons show a recoil peak in p+p that is suppressed in d+Au at low pion energy. These observations are qualitatively consistent with a saturation picture of the low-x gluon structure of heavy nuclei. Future measurements to elucidate the dynamics underlying these observations are also described.Comment: 4 pages, 3 figures. To appear in proceedings of DIS200

    PL 4-manifolds admitting simple crystallizations: framed links and regular genus

    Get PDF
    Simple crystallizations are edge-coloured graphs representing PL 4-manifolds with the property that the 1-skeleton of the associated triangulation equals the 1-skeleton of a 4-simplex. In the present paper, we prove that any (simply-connected) PL 44-manifold MM admitting a simple crystallization admits a special handlebody decomposition, too; equivalently, MM may be represented by a framed link yielding S3\mathbb S^3, with exactly β2(M)\beta_2(M) components (β2(M)\beta_2(M) being the second Betti number of MM). As a consequence, the regular genus of MM is proved to be the double of β2(M)\beta_2(M). Moreover, the characterization of any such PL 44-manifold by k(M)=3β2(M)k(M)= 3 \beta_2(M), where k(M)k(M) is the gem-complexity of MM (i.e. the non-negative number p1p-1, 2p2p being the minimum order of a crystallization of MM) implies that both PL invariants gem-complexity and regular genus turn out to be additive within the class of all PL 44-manifolds admitting simple crystallizations (in particular: within the class of all "standard" simply-connected PL 4-manifolds).Comment: 14 pages, no figures; this is a new version of the former paper "A characterization of PL 4-manifolds admitting simple crystallizations

    Computing Matveev's complexity via crystallization theory: the boundary case

    Get PDF
    The notion of Gem-Matveev complexity has been introduced within crystallization theory, as a combinatorial method to estimate Matveev's complexity of closed 3-manifolds; it yielded upper bounds for interesting classes of such manifolds. In this paper we extend the definition to the case of non-empty boundary and prove that for each compact irreducible and boundary-irreducible 3-manifold it coincides with the modified Heegaard complexity introduced by Cattabriga, Mulazzani and Vesnin. Moreover, via Gem-Matveev complexity, we obtain an estimation of Matveev's complexity for all Seifert 3-manifolds with base D2\mathbb D^2 and two exceptional fibers and, therefore, for all torus knot complements.Comment: 27 pages, 14 figure

    Feasibility of observer system for determining orientation of balloon borne observational platforms

    Get PDF
    An observer model for predicting the orientation of balloon borne research platforms was developed. The model was employed in conjunction with data from the LACATE mission in order to determine the platform orientation as a function of time

    IETS and quantum interference: propensity rules in the presence of an interference feature

    Full text link
    Destructive quantum interference in single molecule electronics is an intriguing phe- nomenon; however, distinguishing quantum interference effects from generically low transmission is not trivial. In this paper, we discuss how quantum interference ef- fects in the transmission lead to either low current or a particular line shape in current-voltage curves, depending on the position of the interference feature. Sec- ondly, we consider how inelastic electron tunneling spectroscopy can be used to probe the presence of an interference feature by identifying vibrational modes that are se- lectively suppressed when quantum interference effects dominate. That is, we expand the understanding of propensity rules in inelastic electron tunneling spectroscopy to molecules with destructive quantum interference.Comment: 19 pages, 6 figure

    Pedestal and Peak Structure in Jet Correlation

    Full text link
    We study the characteristics of correlation between particles in jets produced in heavy-ion collisions. In the framework of parton recombination we calculate the η\eta and ϕ\phi distributions of a pion associated with a trigger particle. The origin of the pedestal in Δη\Delta\eta is related to the longitudinal expansion of the thermal partons that are enhanced by the energy loss of hard partons traversing the bulk medium. The peaks in Δη\Delta\eta and Δϕ\Delta\phi are related to the same angular spread of the shower partons in a jet cone. No artificial short- or long-range correlations are put in by hand. A large part of the correlation between hadrons in jets is due to the correlation among the shower partons arising from momentum conservation. Recombination between thermal and shower partons dominates the correlation characterisitics in the intermediate pTp_T region.Comment: 14 pages in LaTex and 2 figures in ep

    Input and Intake in Language Acquisition

    Get PDF
    This dissertation presents an approach for a productive way forward in the study of language acquisition, sealing the rift between claims of an innate linguistic hypothesis space and powerful domain general statistical inference. This approach breaks language acquisition into its component parts, distinguishing the input in the environment from the intake encoded by the learner, and looking at how a statistical inference mechanism, coupled with a well defined linguistic hypothesis space could lead a learn to infer the native grammar of their native language. This work draws on experimental work, corpus analyses and computational models of Tsez, Norwegian and English children acquiring word meanings, word classes and syntax to highlight the need for an appropriate encoding of the linguistic input in order to solve any given problem in language acquisition

    Single-molecule Electronics: Cooling Individual Vibrational Modes by the Tunneling Current

    Full text link
    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes, can in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular 'heat sink' where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the 'cooling mode', given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions, have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.Comment: 18 pages, 6 figure
    corecore