2,056 research outputs found
Solitons in Yakushevich-like models of DNA dynamics with improved intrapair potential
The Yakushevich (Y) model provides a very simple pictures of DNA torsion
dynamics, yet yields remarkably correct predictions on certain physical
characteristics of the dynamics. In the standard Y model, the interaction
between bases of a pair is modelled by a harmonic potential, which becomes
anharmonic when described in terms of the rotation angles; here we substitute
to this different types of improved potentials, providing a more physical
description of the H-bond mediated interactions between the bases. We focus in
particular on soliton solutions; the Y model predicts the correct size of the
nonlinear excitations supposed to model the ``transcription bubbles'', and this
is essentially unchanged with the improved potential. Other features of soliton
dynamics, in particular curvature of soliton field configurations and the
Peierls-Nabarro barrier, are instead significantly changed
Sine-Gordon solitons, auxiliary fields, and singular limit of a double pendulums chain
We consider the continuum version of an elastic chain supporting topological
and non-topological degrees of freedom; this generalizes a model for the
dynamics of DNA recently proposed and investigated by ourselves. In a certain
limit, the non-topological degrees of freedom are frozen, and the model reduces
to the sine-Gordon equations and thus supports well-known topological soliton
solutions. We consider a (singular) perturbative expansion around this limit
and study in particular how the non-topological field assume the role of an
auxiliary field. This provides a more general framework for the slaving of this
degree of freedom on the topological one, already observed elsewhere in the
context of the mentioned DNA model; in this framework one expects such
phenomenon to arise in a quite large class of field-theoretical models.Comment: 18 pages, 2 figure
Ramsey interference with single photons
Interferometry using discrete energy levels in nuclear, atomic or molecular
systems is the foundation for a wide range of physical phenomena and enables
powerful techniques such as nuclear magnetic resonance, electron spin
resonance, Ramsey-based spectroscopy and laser/maser technology. It also plays
a unique role in quantum information processing as qubits are realized as
energy superposition states of single quantum systems. Here, we demonstrate
quantum interference of different energy states of single quanta of light in
full analogy to energy levels of atoms or nuclear spins and implement a Ramsey
interferometer with single photons. We experimentally generate energy
superposition states of a single photon and manipulate them with unitary
transformations to realize arbitrary projective measurements, which allows for
the realization a high-visibility single-photon Ramsey interferometer. Our
approach opens the path for frequency-encoded photonic qubits in quantum
information processing and quantum communication.Comment: 16 page
Solitons in the Yakushevich model of DNA beyond the contact approximation
The Yakushevich model of DNA torsion dynamics supports soliton solutions,
which are supposed to be of special interest for DNA transcription. In the
discussion of the model, one usually adopts the approximation ,
where is a parameter related to the equilibrium distance between bases
in a Watson-Crick pair. Here we analyze the Yakushevich model without . The model still supports soliton solutions indexed by two winding
numbers ; we discuss in detail the fundamental solitons, corresponding
to winding numbers (1,0) and (0,1) respectively
Optimizing Communication in Twenty-First Century Residential Architecture in Hawaiâi.
D.Arch. Thesis. University of HawaiÊ»i at MÄnoa 2018
Frequency Multiplexing for Quasi-Deterministic Heralded Single-Photon Sources
Single-photon sources based on optical parametric processes have been used
extensively for quantum information applications due to their flexibility,
room-temperature operation and potential for photonic integration. However, the
intrinsically probabilistic nature of these sources is a major limitation for
realizing large-scale quantum networks. Active feedforward switching of photons
from multiple probabilistic sources is a promising approach that can be used to
build a deterministic source. However, previous implementations of this
approach that utilize spatial and/or temporal multiplexing suffer from rapidly
increasing switching losses when scaled to a large number of modes. Here, we
break this limitation via frequency multiplexing in which the switching losses
remain fixed irrespective of the number of modes. We use the third-order
nonlinear process of Bragg scattering four-wave mixing as an efficient
ultra-low noise frequency switch and demonstrate multiplexing of three
frequency modes. We achieve a record generation rate of
multiplexed photons per second with an ultra-low = 0.07, indicating
high single-photon purity. Our scalable, all-fiber multiplexing system has a
total loss of just 1.3 dB independent of the number of multiplexed modes, such
that the 4.8 dB enhancement from multiplexing three frequency modes markedly
overcomes switching loss. Our approach offers a highly promising path to
creating a deterministic photon source that can be integrated on a chip-based
platform.Comment: 28 pages, 9 figures. Comments welcom
- âŠ