55 research outputs found
Few cycle pulse propagation
We present a comprehensive framework for treating the nonlinear interaction
of few-cycle pulses using an envelope description that goes beyond the
traditional SVEA method. This is applied to a range of simulations that
demonstrate how the effect of a nonlinearity differs between the
many-cycle and few-cycle cases. Our approach, which includes diffraction,
dispersion, multiple fields, and a wide range of nonlinearities, builds upon
the work of Brabec and Krausz[1] and Porras[2]. No approximations are made
until the final stage when a particular problem is considered.
The original version (v1) of this arXiv paper is close to the published
Phys.Rev.A. version, and much smaller in size.Comment: 9 pages, 14 figure
Self-trapped bidirectional waveguides in a saturable photorefractive medium
We introduce a time-dependent model for the generation of joint solitary
waveguides by counter-propagating light beams in a photorefractive crystal.
Depending on initial conditions, beams form stable steady-state structures or
display periodic and irregular temporal dynamics. The steady-state solutions
are non-uniform in the direction of propagation and represent a general class
of self-trapped waveguides, including counterpropagating spatial vector
solitons as a particular case.Comment: 4 pages, 5 figure
Picosecond-resolution single-photon time lens for temporal mode quantum processing
Techniques to control the spectro-temporal properties of quantum states of light at ultrafast time scales are crucial for numerous applications in quantum information science. In this work, we report an all-optical time lens for quantum signals based on Bragg-scattering four-wave mixing with picosecond resolution. Our system achieves a temporal magnification factor of 158 with single-photon level inputs, which is sufficient to overcome the intrinsic timing jitter of superconducting nanowire single-photon detectors. We demonstrate discrimination of two terahertz-bandwidth, single-photon-level pulses with 2.1 ps resolution (electronic jitter corrected resolution of 1.25 ps).We draw on elegant tools from Fourier optics to further show that the time-lens framework can be extended to perform complex unitary spectro-temporal transformations by imparting optimized temporal and spectral phase profiles to the input waveforms. Using numerical optimization techniques, we show that a four-stage transformation can realize an efficient temporal mode sorter that demultiplexes 10 Hermite–Gaussian (HG) modes. Our time-lens-based framework represents a new toolkit for arbitrary spectro-temporal processing of single photons, with applications in temporal mode quantum processing, high-dimensional quantum key distribution, temporal mode matching for quantum networks, and quantum-enhanced sensing with time-frequency entangled states.Chaitali Joshi, Ben M. Sparkes, Alessandro Farsi, Thomas Gerrits, Varun Verma, Sven Ramelow, Sae Woo Nam, and Alexander L. Gaet
Modulation Instability of Ultrashort Pulses in Quadratic Nonlinear Media beyond the Slowly Varying Envelope Approximation
We report a modulational instability (MI) analysis of a mathematical model
appropriate for ultrashort pulses in cascaded quadratic-cubic nonlinear media
beyond the so-called slowly varying envelope approximation. Theoretically
predicted MI properties are found to be in good agreement with numerical
simulation. The study shows the possibility of controlling the generation of MI
and formation of solitons in a cascaded quadratic-cubic media in the few cycle
regimes. We also find that stable propagation of soliton-like few-cycle pulses
in the medium is subject to the fulfilment of the modulation instability
criteria
Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime
Numerical simulations are used to study how fiber supercontinuum generation
seeded by picosecond pulses can be actively controlled through the use of input
pulse modulation. By carrying out multiple simulations in the presence of
noise, we show how tailored supercontinuum Spectra with increased bandwidth and
improved stability can be generated using an input envelope modulation of
appropriate frequency and depth. The results are discussed in terms of the
non-linear propagation dynamics and pump depletion.Comment: Aspects of this work were presented in Paper ThJ2 at OECC/ACOFT 2008,
Sydney Australia 7-10 July (2008). Journal paper submitted for publication 30
July 200
Temporal structure of stimulated-Brillouin-scattering reflectivity considering transversal-mode development
The time-resolved reflectivity of optical phase conjugation by stimulated Brillouin scattering ~SBS! is investigated both theoretically and experimentally. A three-dimensional and transient model of SBS is developed to compare the experimental and theoretical results. Noise initiation of the SBS process is included in the model to simulate the shot-to-shot variation in the reflectivity and the Stokes temporal profile.Shahraam Afshaarvahid, Axel Heuer, Ralf Menzel, and Jesper Munc
Design of a mode converter for efficient light-atom coupling in free space
In this article, we describe how to develop a mode converter that transforms
a plane electromagnetic wave into an inward moving dipole wave. The latter one
is intended to bring a single atom or ion from its ground state to its excited
state by absorption of a single photon wave packet with near-100% efficiency.Comment: RevTex4, 3 figures, revised version, accepted for publication at
Appl. Phys.
Real-life data on potential drug-drug interactions in patients with chronic hepatitis C viral infection undergoing antiviral therapy with interferon-free DAAs in the PITER Cohort Study
Background There are few real-life data on the potential drug-drug interactions (DDIs) between anti-HCV direct-acting antivirals (DAAs) and the comedications used. Aim To assess the potential DDIs of DAAs in HCV-infected outpatients, according to the severity of liver disease and comedication used in a prospective multicentric study. Methods Data from patients in 15 clinical centers who had started a DAA regimen and were receiving comedications during March 2015 to March 2016 were prospectively evaluated. The DDIs for each regimen and comedication were assigned according to HepC Drug Interactions (www.hep-druginteractions.org). Results Of the 449 patients evaluated, 86 had mild liver disease and 363 had moderate-to-severe disease. The use of a single comedication was more frequent among patients with mild liver disease (p = 0.03), whereas utilization of more than three drugs among those with moderate-to-severe disease (p = 0.05). Of the 142 comedications used in 86 patients with mild disease, 27 (20%) may require dose adjustment/closer monitoring, none was contraindicated. Of the 322 comedications used in 363 patients with moderate-to-severe liver disease, 82 (25%) were classified with potential DDIs that required only monitoring and dose adjustments; 10 (3%) were contraindicated in severe liver disease. In patients with mild liver disease 30% (26/86) used at least one drug with a potential DDI whereas of the 363 patients with moderate-to-severe liver disease, 161 (44%) were at risk for one or more DDI. Conclusions Based on these results, we can estimate that 30-44% of patients undergoing DAA and taking comedications are at risk of a clinically significant DDI. This data indicates the need for increased awareness of potential DDI during DAA therapy, especially in patients with moderate-to-severe liver disease. For several drugs, the recommendation related to the DDI changes from "dose adjustment/closer monitoring" in mild to moderate liver disease, to "the use is contraindicated" in severe liver disease
Memorized polarization-dependent light scattering in rare-earth-ion-doped glass
We report the observation of memorized polarization-dependent light scattering in a Eu2 + -doped fluoroaluminate glass sample. Anisotropic light scattering along the plane of the light polarization was observed in the glass sample after the excitation of a focused 800 nm, 150 fs laser beam at a repetition rate of 200 kHz. When we changed the direction of the light polarization and irradiated the same location, we observed an anisotropic light-scattering pattern identical to the original one at the beginning, but then observed a new pattern along the new direction of the light polarization while the original light-scattering pattern disappeared gradually with the passage of time. This observed phenomenon was considered to be due to the light scattering of the polarization-dependent permanent microstructure induced by the polarized ultrashort pulsed laser itself
- …