38 research outputs found

    Protein-Protein Interactions in Clathrin Vesicular Assembly: Radial Distribution of Evolutionary Constraints in Interfaces

    Get PDF
    In eukaryotic organisms clathrin-coated vesicles are instrumental in the processes of endocytosis as well as intracellular protein trafficking. Hence, it is important to understand how these vesicles have evolved across eukaryotes, to carry cargo molecules of varied shapes and sizes. The intricate nature and functional diversity of the vesicles are maintained by numerous interacting protein partners of the vesicle system. However, to delineate functionally important residues participating in protein-protein interactions of the assembly is a daunting task as there are no high-resolution structures of the intact assembly available. The two cryoEM structures closely representing intact assembly were determined at very low resolution and provide positions of Cα atoms alone. In the present study, using the method developed by us earlier, we predict the protein-protein interface residues in clathrin assembly, taking guidance from the available low-resolution structures. The conservation status of these interfaces when investigated across eukaryotes, revealed a radial distribution of evolutionary constraints, i.e., if the members of the clathrin vesicular assembly can be imagined to be arranged in spherical manner, the cargo being at the center and clathrins being at the periphery, the detailed phylogenetic analysis of these members of the assembly indicated high-residue variation in the members of the assembly closer to the cargo while high conservation was noted in clathrins and in other proteins at the periphery of the vesicle. This points to the strategy adopted by the nature to package diverse proteins but transport them through a highly conserved mechanism

    Prediction of protein-protein interactions in dengue virus coat proteins guided by low resolution cryoEM structures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dengue virus along with the other members of the flaviviridae family has reemerged as deadly human pathogens. Understanding the mechanistic details of these infections can be highly rewarding in developing effective antivirals. During maturation of the virus inside the host cell, the coat proteins E and M undergo conformational changes, altering the morphology of the viral coat. However, due to low resolution nature of the available 3-D structures of viral assemblies, the atomic details of these changes are still elusive.</p> <p>Results</p> <p>In the present analysis, starting from Cα positions of low resolution cryo electron microscopic structures the residue level details of protein-protein interaction interfaces of dengue virus coat proteins have been predicted. By comparing the preexisting structures of virus in different phases of life cycle, the changes taking place in these predicted protein-protein interaction interfaces were followed as a function of maturation process of the virus. Besides changing the current notion about the presence of only homodimers in the mature viral coat, the present analysis indicated presence of a proline-rich motif at the protein-protein interaction interface of the coat protein. Investigating the conservation status of these seemingly functionally crucial residues across other members of flaviviridae family enabled dissecting common mechanisms used for infections by these viruses.</p> <p>Conclusions</p> <p>Thus, using computational approach the present analysis has provided better insights into the preexisting low resolution structures of virus assemblies, the findings of which can be made use of in designing effective antivirals against these deadly human pathogens.</p

    Recognition of Interaction Interface Residues in Low-Resolution Structures of Protein Assemblies Solely from the Positions of Cα Atoms

    Get PDF
    Background: The number of available structures of large multi-protein assemblies is quite small. Such structures provide phenomenal insights on the organization, mechanism of formation and functional properties of the assembly. Hence detailed analysis of such structures is highly rewarding. However, the common problem in such analyses is the low resolution of these structures. In the recent times a number of attempts that combine low resolution cryo-EM data with higher resolution structures determined using X-ray analysis or NMR or generated using comparative modeling have been reported. Even in such attempts the best result one arrives at is the very course idea about the assembly structure in terms of trace of the C alpha atoms which are modeled with modest accuracy. Methodology/Principal Findings: In this paper first we present an objective approach to identify potentially solvent exposed and buried residues solely from the position of C alpha atoms and amino acid sequence using residue type-dependent thresholds for accessible surface areas of C alpha. We extend the method further to recognize potential protein-protein interface residues. Conclusion/Significance: Our approach to identify buried and exposed residues solely from the positions of C alpha atoms resulted in an accuracy of 84%, sensitivity of 83-89% and specificity of 67-94% while recognition of interfacial residues corresponded to an accuracy of 94%, sensitivity of 70-96% and specificity of 58-94%. Interestingly, detailed analysis of cases of mismatch between recognition of interface residues from C alpha positions and all-atom models suggested that, recognition of interfacial residues using C alpha atoms only correspond better with intuitive notion of what is an interfacial residue. Our method should be useful in the objective analysis of structures of protein assemblies when positions of only C alpha positions are available as, for example, in the cases of integration of cryo-EM data and high resolution structures of the components of the assembly

    High-level expression of biologically active glycoprotein hormones in Pichia pastoris strains—selection of strain GS115, and not X-33, for the production of biologically active N-glycosylated 15N-labeled phCG

    Get PDF
    The methylotrophic yeast Pichia pastoris is widely used for the production of recombinant glycoproteins. With the aim to generate biologically active 15N-labeled glycohormones for conformational studies focused on the unravelling of the NMR structures in solution, the P. pastoris strains GS115 and X-33 were explored for the expression of human chorionic gonadotropin (phCG) and human follicle-stimulating hormone (phFSH). In agreement with recent investigations on the N-glycosylation of phCG, produced in P. pastoris GS115, using ammonia/glycerol-methanol as nitrogen/carbon sources, the N-glycosylation pattern of phCG, synthesized using NH4Cl/glucose–glycerol–methanol, comprised neutral and charged, phosphorylated high-mannose-type N-glycans (Man8–15GlcNAc2). However, the changed culturing protocol led to much higher amounts of glycoprotein material, which is of importance for an economical realistic approach of the aimed NMR research. In the context of these studies, attention was also paid to the site specific N-glycosylation in phCG produced in P. pastoris GS115. In contrast to the rather simple N-glycosylation pattern of phCG expressed in the GS115 strain, phCG and phFSH expressed in the X-33 strain revealed, besides neutral high-mannose-type N-glycans, also high concentrations of neutral hypermannose-type N-glycans (Manup-to-30GlcNAc2). The latter finding made the X-33 strain not very suitable for generating 15N-labeled material. Therefore, 15N-phCG was expressed in the GS115 strain using the new optimized protocol. The 15N-enrichment was evaluated by 15N-HSQC NMR spectroscopy and GLC-EI/MS. Circular dichroism studies indicated that 15N-phCG/GS115 had the same folding as urinary hCG. Furthermore, 15N-phCG/GS115 was found to be similar to the unlabeled protein in every respect as judged by radioimmunoassay, radioreceptor assays, and in vitro bioassays

    Hyperexpression and purification of biologically active human luteinizing hormone and human chorionic gonadotropin using the methylotropic yeast, Pichia pastoris

    No full text
    The glycoprotein hormones, luteinizing hormone (LH), human chorionic gonadotropin (hCG), thyroid stimulating hormone (TSH), and follicle stimulating hormone (FSH), play important roles in overall physiology and reproduction. These hormones are heterodimeric molecules consisting of an identical a subunit non-covalently associated with the hormone-specific β subunit. The inherent structural intricacies possessed by these hormones make them very interesting model systems for structure-function relationship studies of complex dimeric glycoproteins. The structural studies, as well as, the therapeutic applications require large quantities of biologically active hormones free of any contaminants. In this study, we report hyperexpression and purification of biologically active recombinant hLH and hCG expressed using Pichia pastoris expression system. A combination of hydrophobic interaction chromatography and ion exchange chromatography has been used to purify these recombinant hormones to homogeneity. Using a number of biochemical and immunological criteria, the recombinant hormones have been shown to be similar to the natural hormones and were equally biologically active. The preliminary data also suggested that P. pastoris cells express a low molecular weight isoform of hCG that appeared to be less glycosylated. This isoform exhibited lesser affinity for the receptor as compared to hCG, but was found to be fully biologically active

    Interface residues of clathrin heavy chains as predicted from low resolution structure of clathrin coat (PDB Id 1xi4).

    No full text
    <p>Interface residues of clathrin heavy chains as predicted from low resolution structure of clathrin coat (PDB Id 1xi4).</p

    Distribution of evolutionary constraints in the clathrin coated vesicle assembly in the form of a cartoon.

    No full text
    <p>If clathrin coated assembly can be imagined as a sphere, with cargo being at the center while clathrin heavy chain were being at the periphery, then the figure provides view of this assembly as a transverse section of this sphere. Different components (the subunits of the complexes) of the assembly are labeled appropriately in the figure. The shaded background depicts the observed pattern in evolutionary constraints, dark depicting maximum variation in sequence (least constraint), as observed towards centre of the assembly, while the lighter shades indicate less sequence divergence (maximum constraint) as seen more towards the periphery.</p

    Structure of Clathrin coat (PDB ID : 1xi4).

    No full text
    <p>Shown in the figure is the structure of clathrin coat, visualized in 3D using PyMOL software <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0031445#pone.0031445-DeLlano1" target="_blank">[53]</a>. The structural model was generated by superimposing high resolution structural data over the low resolution cryoEM electron density by Fotin A and coworkers <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0031445#pone.0031445-Fotin1" target="_blank">[26]</a>. The model was provided at a resolution equivalent to 8 Å and it provides Cα atom positions only. Shown in the figure are the clathrin chains with the Cα atoms represented as spheres. The light chains of clathrin are seen as slender sticks in the figure while others occupying most of the space are the heavy chains.</p

    REPERTOIRE OF PROTEIN KINASES ENCODED IN THE GENOME OF ZEBRAFISH SHOWS REMARKABLY LARGE POPULATION OF PIM KINASES

    No full text
    In recent times, zebrafish has garnered lot of popularity as model organism to study human cancers. Despite high evolutionary divergence from humans, zebrafish develops almost all types of human tumors when induced. However, mechanistic details of tumor formation have remained largely unknown. Present study is aimed at analysis of repertoire of kinases in zebrafish proteome to provide insights into various cellular components. Annotation using highly sensitive remote homology detection methods revealed ``substantial expansion'' of Ser/Thr/Tyr kinase family in zebrafish compared to humans, constituting over 3% of proteome. Subsequent classification of kinases into subfamilies revealed presence of large number of CAMK group of kinases, with massive representation of PIM kinases, important for cell cycle regulation and growth. Extensive sequence comparison between human and zebrafish PIM kinases revealed high conservation of functionally important residues with a few organism specific variations. There are about 300 PIM kinases in zebrafish kinome, while human genome codes for only about 500 kinases altogether. PIM kinases have been implicated in various human cancers and are currently being targeted to explore their therapeutic potentials. Hence, in depth analysis of PIM kinases in zebrafish has opened up new avenues of research to verify the model organism status of zebrafish
    corecore