63 research outputs found

    Junctional adhesion molecule (JAM)-C deficient C57BL/6 mice develop a severe hydrocephalus

    Get PDF
    The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C−/− mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C−/− mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C−/− C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C−/− mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3rd ventricle in JAM-C−/− C57BL/6 mice. Taken together, our study suggests that JAM-C−/− C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C

    Junctional adhesion molecule-A deficient mice are protected from severe experimental autoimmune encephalomyelitis.

    Get PDF
    In multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), early pathological features include immune cell infiltration into the central nervous system (CNS) and blood-brain barrier (BBB) disruption. We investigated the role of junctional adhesion molecule-A (JAM-A), a tight junction protein, in active EAE (aEAE) pathogenesis. Our study confirms JAM-A expression at the blood-brain barrier and its luminal redistribution during aEAE. JAM-A deficient (JAM-A-/-) C57BL/6J mice exhibited milder aEAE, unrelated to myelin oligodendrocyte glycoprotein-specific CD4+ T-cell priming. While JAM-A absence influenced macrophage behavior on primary mouse brain microvascular endothelial cells (pMBMECs) under flow in vitro, it did not impact T-cell extravasation across primary mouse brain microvascular endothelial cells. At aEAE onset, we observed reduced lymphocyte and CCR2+ macrophage infiltration into the spinal cord of JAM-A-/- mice compared to control littermates. This correlated with increased CD3+ T-cell accumulation in spinal cord perivascular spaces and brain leptomeninges, suggesting JAM-A absence leads to T-cell trapping in central nervous system border compartments. In summary, JAM-A plays a role in immune cell infiltration and clinical disease progression in aEAE

    The heparan sulfate proteoglycan agrin contributes to barrier properties of mouse brain endothelial cells by stabilizing adherens junctions

    Get PDF
    Barrier characteristics of brain endothelial cells forming the blood-brain barrier (BBB) are tightly regulated by cellular and acellular components of the neurovascular unit. During embryogenesis, the accumulation of the heparan sulfate proteoglycan agrin in the basement membranes ensheathing brain vessels correlates with BBB maturation. In contrast, loss of agrin deposition in the vasculature of brain tumors is accompanied by the loss of endothelial junctional proteins. We therefore wondered whether agrin had a direct effect on the barrier characteristics of brain endothelial cells. Agrin increased junctional localization of vascular endothelial (VE)-cadherin, β-catenin, and zonula occludens-1 (ZO-1) but not of claudin-5 and occludin in the brain endothelioma cell line bEnd5 without affecting the expression levels of these proteins. This was accompanied by an agrin-induced reduction of the paracellular permeability of bEnd5 monolayers. In vivo, the lack of agrin also led to reduced junctional localization of VE-cadherin in brain microvascular endothelial cells. Taken together, our data support the notion that agrin contributes to barrier characteristics of brain endothelium by stabilizing the adherens junction proteins VE-cadherin and β-catenin and the junctional protein ZO-1 to brain endothelial junctions

    The neurovascular unit as a selective barrier to polymorphonuclear granulocyte (PMN) infiltration into the brain after ischemic injury

    Get PDF
    The migration of polymorphonuclear granulocytes (PMN) into the brain parenchyma and release of their abundant proteases are considered the main causes of neuronal cell death and reperfusion injury following ischemia. Yet, therapies targeting PMN egress have been largely ineffective. To address this discrepancy we investigated the temporo-spatial localization of PMNs early after transient ischemia in a murine transient middle cerebral artery occlusion (tMCAO) model and human stroke specimens. Using specific markers that distinguish PMN (Ly6G) from monocytes/macrophages (Ly6C) and that define the cellular and basement membrane boundaries of the neurovascular unit (NVU), histology and confocal microscopy revealed that virtually no PMNs entered the infarcted CNS parenchyma. Regardless of tMCAO duration, PMNs were mainly restricted to luminal surfaces or perivascular spaces of cerebral vessels. Vascular PMN accumulation showed no spatial correlation with increased vessel permeability, enhanced expression of endothelial cell adhesion molecules, platelet aggregation or release of neutrophil extracellular traps. Live cell imaging studies confirmed that oxygen and glucose deprivation followed by reoxygenation fail to induce PMN migration across a brain endothelial monolayer under flow conditions in vitro. The absence of PMN infiltration in infarcted brain tissues was corroborated in 25 human stroke specimens collected at early time points after infarction. Our observations identify the NVU rather than the brain parenchyma as the site of PMN action after CNS ischemia and suggest reappraisal of targets for therapies to reduce reperfusion injury after strok

    Claudin-12 is not required for blood-brain barrier tight junction function.

    Get PDF
    BACKGROUND The blood-brain barrier (BBB) ensures central nervous system (CNS) homeostasis by strictly controlling the passage of molecules and solutes from the bloodstream into the CNS. Complex and continuous tight junctions (TJs) between brain endothelial cells block uncontrolled paracellular diffusion of molecules across the BBB, with claudin-5 being its dominant TJs protein. However, claudin-5 deficient mice still display ultrastructurally normal TJs, suggesting the contribution of other claudins or tight-junction associated proteins in establishing BBB junctional complexes. Expression of claudin-12 at the BBB has been reported, however the exact function and subcellular localization of this atypical claudin remains unknown. METHODS We created claudin-12-lacZ-knock-in C57BL/6J mice to explore expression of claudin-12 and its role in establishing BBB TJs function during health and neuroinflammation. We furthermore performed a broad standardized phenotypic check-up of the mouse mutant. RESULTS Making use of the lacZ reporter allele, we found claudin-12 to be broadly expressed in numerous organs. In the CNS, expression of claudin-12 was detected in many cell types with very low expression in brain endothelium. Claudin-12lacZ/lacZ C57BL/6J mice lacking claudin-12 expression displayed an intact BBB and did not show any signs of BBB dysfunction or aggravated neuroinflammation in an animal model for multiple sclerosis. Determining the precise localization of claudin-12 at the BBB was prohibited by the fact that available anti-claudin-12 antibodies showed comparable detection and staining patterns in tissues from wild-type and claudin-12lacZ/lacZ C57BL/6J mice. CONCLUSIONS Our present study thus shows that claudin-12 is not essential in establishing or maintaining BBB TJs integrity. Claudin-12 is rather expressed in cells that typically lack TJs suggesting that claudin-12 plays a role other than forming classical TJs. At the same time, in depth phenotypic screening of clinically relevant organ functions of claudin-12lacZ/lacZ C57BL/6J mice suggested the involvement of claudin-12 in some neurological but, more prominently, in cardiovascular functions

    Claudin-12 is not required for blood-brain barrier tight junction function

    Get PDF
    Background The blood-brain barrier (BBB) ensures central nervous system (CNS) homeostasis by strictly controlling the passage of molecules and solutes from the bloodstream into the CNS. Complex and continuous tight junctions (TJs) between brain endothelial cells block uncontrolled paracellular diffusion of molecules across the BBB, with claudin-5 being its dominant TJs protein. However, claudin-5 deficient mice still display ultrastructurally normal TJs, suggesting the contribution of other claudins or tight-junction associated proteins in establishing BBB junctional complexes. Expression of claudin-12 at the BBB has been reported, however the exact function and subcellular localization of this atypical claudin remains unknown. Methods We created claudin-12-lacZ-knock-in C57BL/6J mice to explore expression of claudin-12 and its role in establishing BBB TJs function during health and neuroinflammation. We furthermore performed a broad standardized phenotypic check-up of the mouse mutant. Results Making use of the lacZ reporter allele, we found claudin-12 to be broadly expressed in numerous organs. In the CNS, expression of claudin-12 was detected in many cell types with very low expression in brain endothelium. Claudin-12(lacZ/lacZ) C57BL/6J mice lacking claudin-12 expression displayed an intact BBB and did not show any signs of BBB dysfunction or aggravated neuroinflammation in an animal model for multiple sclerosis. Determining the precise localization of claudin-12 at the BBB was prohibited by the fact that available anti-claudin-12 antibodies showed comparable detection and staining patterns in tissues from wild-type and claudin-12(lacZ/lacZ) C57BL/6J mice. Conclusions Our present study thus shows that claudin-12 is not essential in establishing or maintaining BBB TJs integrity. Claudin-12 is rather expressed in cells that typically lack TJs suggesting that claudin-12 plays a role other than forming classical TJs. At the same time, in depth phenotypic screening of clinically relevant organ functions of claudin-12(lacZ/lacZ) C57BL/6J mice suggested the involvement of claudin-12 in some neurological but, more prominently, in cardiovascular functions

    Alpha4beta1 integrin mediates the recruitment of immature dendritic cells across the blood-brain barrier during experimental autoimmune encephalomyelitis

    No full text
    Dendritic cells (DCs) within the CNS are recognized to play an important role in the effector phase and propagation of the immune response in experimental autoimmune encephalomyelitis (EAE), a mouse model for multiple sclerosis. However, the mechanisms regulating DC trafficking into the CNS still need to be characterized. In this study, we show by performing intravital fluorescence videomicroscopy of the inflamed spinal cord white-matter microvasculature in SJL mice with EAE that immature, and to a lesser extent, LPS-matured, bone marrow-derived DCs efficiently interact with the CNS endothelium by rolling, capturing, and firm adhesion. Immature but not LPS-matured DCs efficiently migrated across the wall of inflamed parenchymal microvessels into the CNS. Blocking alpha4 integrins interfered with the adhesion but not the rolling or capturing of immature and LPS-matured DCs to the CNS microvascular endothelium, inhibiting their migration across the vascular wall. Functional absence of beta1 integrins but not of beta7 integrins or alpha4beta7 integrin similarly reduced the adhesion of immature DCs to the CNS microvascular endothelium, demonstrating that alpha4beta1 but not alpha4beta7 integrin mediates this step of immature DCs interaction with the inflamed blood-brain barrier during EAE. Our study shows that during EAE, especially immature DCs migrate into the CNS, where they may be crucial for the perpetuation of the CNS-targeted autoimmune response. Thus therapeutic targeting of alpha4 integrins affects DC trafficking into the CNS and may therefore lead to the resolution of the CNS autoimmune inflammation by reducing the number of CNS professional APCs

    ICAM-1 C57BL/6 Mice Are Not Protected from Experimental Ischemic Stroke.

    No full text
    Accumulation of neutrophils in the brain is a hallmark of cerebral ischemia and considered central in exacerbating tissue injury. Intercellular adhesion molecule (ICAM)-1 is upregulated on brain endothelial cells after ischemic stroke and considered pivotal in neutrophil recruitment as ICAM-1-deficient mouse lines were found protected from experimental stroke. Translation of therapeutic inhibition of ICAM-1 into the clinic however failed. This prompted us to investigate stroke pathogenesis in Icam1 C57BL/6 mutants, a true ICAM-1 mouse line. Performing transient middle cerebral artery occlusion, we found that absence of ICAM-1 did not ameliorate stroke pathology at acute time points after reperfusion. Near-infrared imaging showed comparable accumulation of neutrophils in the ischemic hemispheres of ICAM-1 and wild type C57BL/6 mice. We also isolated equal numbers of neutrophils from the ischemic brains of ICAM-1 and wild type C57BL/6 mice. Immunostaining of the brains showed neutrophils to equally accumulate in the leptomeninges and brain parenchymal vessels of ICAM-1 and wild type C57BL/6 mice. In addition, the lesion size was comparable in ICAM-1 and wild type mice. Our study demonstrates that absence of ICAM-1 neither inhibits cerebral ischemia-induced accumulation of neutrophils in the brain nor provides protection from ischemic stroke
    • …
    corecore