18 research outputs found

    Force Shadows: An Online Method to Estimate and Distribute Vertical Ground Reaction Forces from Kinematic Data

    No full text
    Kinetic models of human motion rely on boundary conditions which are defined by the interaction of the body with its environment. In the simplest case, this interaction is limited to the foot contact with the ground and is given by the so called ground reaction force (GRF). A major challenge in the reconstruction of GRF from kinematic data is the double support phase, referring to the state with multiple ground contacts. In this case, the GRF prediction is not well defined. In this work we present an approach to reconstruct and distribute vertical GRF (vGRF) to each foot separately, using only kinematic data. We propose the biomechanically inspired force shadow method (FSM) to obtain a unique solution for any contact phase, including double support, of an arbitrary motion. We create a kinematic based function, model an anatomical foot shape and mimic the effect of hip muscle activations. We compare our estimations with the measurements of a Zebris pressure plate and obtain correlations of 0.39≤r≤0.94 for double support motions and 0.83≤r≤0.87 for a walking motion. The presented data is based on inertial human motion capture, showing the applicability for scenarios outside the laboratory. The proposed approach has low computational complexity and allows for online vGRF estimation

    Force Shadows: An Online Method to Estimate and Distribute Vertical Ground Reaction Forces from Kinematic Data

    No full text
    Kinetic models of human motion rely on boundary conditions which are defined by the interaction of the body with its environment. In the simplest case, this interaction is limited to the foot contact with the ground and is given by the so called ground reaction force (GRF). A major challenge in the reconstruction of GRF from kinematic data is the double support phase, referring to the state with multiple ground contacts. In this case, the GRF prediction is not well defined. In this work we present an approach to reconstruct and distribute vertical GRF (vGRF) to each foot separately, using only kinematic data. We propose the biomechanically inspired force shadow method (FSM) to obtain a unique solution for any contact phase, including double support, of an arbitrary motion. We create a kinematic based function, model an anatomical foot shape and mimic the effect of hip muscle activations. We compare our estimations with the measurements of a Zebris pressure plate and obtain correlations of 0.39≤r≤0.94 for double support motions and 0.83≤r≤0.87 for a walking motion. The presented data is based on inertial human motion capture, showing the applicability for scenarios outside the laboratory. The proposed approach has low computational complexity and allows for online vGRF estimation

    RNA Polymerase I Transcribes Procyclin Genes and Variant Surface Glycoprotein Gene Expression Sites in Trypanosoma brucei

    No full text
    In eukaryotes, RNA polymerase (pol) I exclusively transcribes the large rRNA gene unit (rDNA) and mRNA is synthesized by RNA pol II. The African trypanosome, Trypanosoma brucei, represents an exception to this rule. In this organism, transcription of genes encoding the variant surface glycoprotein (VSG) and the procyclins is resistant to α-amanitin, indicating that it is mediated by RNA pol I, while other protein-coding genes are transcribed by RNA pol II. To obtain firm proof for this concept, we generated a T. brucei cell line which exclusively expresses protein C epitope-tagged RNA pol I. Using an anti-protein C immunoaffinity matrix, we specifically depleted RNA pol I from transcriptionally active cell extracts. The depletion of RNA pol I impaired in vitro transcription initiated at the rDNA promoter, the GPEET procyclin gene promoter, and a VSG gene expression site promoter but did not affect transcription from the spliced leader (SL) RNA gene promoter. Fittingly, induction of RNA interference against the RNA pol I largest subunit in insect-form trypanosomes significantly reduced the relative transcriptional efficiency of rDNA, procyclin genes, and VSG expression sites in vivo whereas that of SL RNA, αβ-tubulin, and heat shock protein 70 genes was not affected. Our studies unequivocally show that T. brucei harbors a multifunctional RNA pol I which, in addition to transcribing rDNA, transcribes procyclin genes and VSG gene expression sites

    Acquiring Temporal Meanings Without Tense Morphology: The Case of L2 Mandarin Chinese

    No full text
    This article reports on an experimental study addressing the second language acquisition of Mandarin temporality. Mandarin Chinese does not mark past, present, or future with dedicated morphemes; the native English of the learners does. It was hypothesized that, in their comprehension, learners would utilize the deictic pattern of expressing temporality, which postulates that bounded events tend to be interpreted as past and unbounded events as present. Twenty-eight bilingual native speakers, 25 intermediate learners, and 23 advanced learners of Mandarin with English as their native language took three different interpretation tests. Learners’ temporal interpretation choices were highly accurate even at intermediate levels of proficiency, suggesting that obeying the deictic pattern in second language comprehension is not hard. Pedagogical implications of these findings are discussed.<br/
    corecore