234 research outputs found
Microct and preparation of β-TCP granular material by polyurethane foam method
Commercial ß-tricalcium phosphate (ß-TCP) is commercialy available in granules manufactured by sintering of powders. We have evaluated the different steps of the manufacturing process of ß-TCP ceramics granules prepared from blocks obtained with the polyurethane foam technology. Three types of slurry were prepared with 10, 15 and 25 g of ß-TCP per gram of polyurethane foam. Analysis was done by scanning electron microscopy, EDX, Raman spectroscopy and microcomputed tomography combined with image analysis. A special algorithm was used to identify the internal microporosity (created by the calcination of the foam) from the internal macroporosity due to the spatial repartition of the material. The low ß-TCP dosages readily infiltrated the foam and the slurry was deposited along the polymer rods. On the contrary, the highest concentration produced inhomogeneous infiltrated blocks and foam cavities appeared completely filled in some areas. 2D microcomputed sections and reconstructed 3D models evidenced this phenomenon and the frequency distribution of the thickness and separation of material trabeculae confirmed the heterogeneity of the distribution. When crushed, blocks prepared with the 25 g slurry provided the largest and irregular granulates
Innovative Virtual Lab for Improving Safety and Port Operations
Computer simulation makes it possible to reproduce real systems and processes in a synthetic environment. In this way virtual analysis turn to be possible and it complex scenarios are suitable to be simulated. In the proposed paper is presented a port system where to study the behavior respect operations and accidents and to consider interaction among multiple players. The simulation is applied to create a Virtual Lab able to evaluate and investigate the development of new procedures, contingency plans during crises. The development of models to be used in simulations is clearly a critical aspect, since the consistency of the simulation depend on the quality of the models and their interaction; in this case the authors used their experience in the field to guarantee a successful Verification and Validation. In this case study, models are used for simulations of phenomena related to port accidents and crises with particular attention to dispersion system of liquid contaminant on sea surface and dispersion of toxic gases into atmosphere. These models have been tested in the Alacres2 simulator in order to create as an effective tool to observe and study the evolution and impact of dangerous situations, as well as a decision-making support to define response plans crises
Remodelling of human atrial K+ currents but not ion channel expression by chronic β-blockade
Chronic β-adrenoceptor antagonist (β-blocker) treatment in patients is associated with a potentially anti-arrhythmic prolongation of the atrial action potential duration (APD), which may involve remodelling of repolarising K+ currents. The aim of this study was to investigate the effects of chronic β-blockade on transient outward, sustained and inward rectifier K+ currents (ITO, IKSUS and IK1) in human atrial myocytes and on the expression of underlying ion channel subunits. Ion currents were recorded from human right atrial isolated myocytes using the whole-cell-patch clamp technique. Tissue mRNA and protein levels were measured using real time RT-PCR and Western blotting. Chronic β-blockade was associated with a 41% reduction in ITO density: 9.3 ± 0.8 (30 myocytes, 15 patients) vs 15.7 ± 1.1 pA/pF (32, 14), p < 0.05; without affecting its voltage-, time- or rate dependence. IK1 was reduced by 34% at −120 mV (p < 0.05). Neither IKSUS, nor its increase by acute β-stimulation with isoprenaline, was affected by chronic β-blockade. Mathematical modelling suggested that the combination of ITO- and IK1-decrease could result in a 28% increase in APD90. Chronic β-blockade did not alter mRNA or protein expression of the ITO pore-forming subunit, Kv4.3, or mRNA expression of the accessory subunits KChIP2, KChAP, Kvβ1, Kvβ2 or frequenin. There was no reduction in mRNA expression of Kir2.1 or TWIK to account for the reduction in IK1. A reduction in atrial ITO and IK1 associated with chronic β-blocker treatment in patients may contribute to the associated action potential prolongation, and this cannot be explained by a reduction in expression of associated ion channel subunits
The effect of bariatric surgery type on cardiac reverse remodelling
Introduction: Bariatric surgery is effective in reversing adverse cardiac remodelling in obesity. However, it is unclear whether the three commonly performed operations; Roux-en-Y Gastric Bypass (RYGB), Laparoscopic Sleeve Gastrectomy (LSG) and Laparoscopic Adjustable Gastric Band (LAGB) are equal in their ability to reverse remodelling. Methods: Fifty-eight patients underwent CMR to assess left ventricular mass (LVM), LV mass:volume ratio (LVMVR) and LV eccentricity index (LVei) before and after bariatric surgery (26 RYGB, 22 LSG and 10 LAGB), including 46 with short-term (median 251–273 days) and 43 with longer-term (median 983–1027 days) follow-up. Abdominal visceral adipose tissue (VAT) and epicardial adipose tissue (EAT) were also assessed. Results: All three procedures resulted in significant decreases in excess body weight (48–70%). Percentage change in VAT and EAT was significantly greater following RYGB and LSG compared to LAGB at both timepoints (VAT:RYGB −47% and −57%, LSG −47% and −54%, LAGB −31% and −25%; EAT:RYGB −13% and −14%, LSG –16% and −19%, LAGB −5% and −5%). Patients undergoing LAGB, whilst having reduced LVM (−1% and −4%), had a smaller decrease at both short (RYGB: −8%, p < 0.005; LSG: −11%, p < 0.0001) and long (RYGB: −12%, p = 0.009; LSG: −13%, p < 0.0001) term timepoints. There was a significant decrease in LVMVR at the long-term timepoint following both RYGB (−7%, p = 0.006) and LSG (−7%, p = 0.021), but not LAGB (−2%, p = 0.912). LVei appeared to decrease at the long-term timepoint in those undergoing RYGB (−3%, p = 0.063) and LSG (−4%, p = 0.015), but not in those undergoing LAGB (1%, p = 0.857). In all patients, the change in LVM correlated with change in VAT (r = 0.338, p = 0.0134), while the change in LVei correlated with change in EAT (r = 0.437, p = 0.001). Conclusions: RYGB and LSG appear to result in greater decreases in visceral adiposity, and greater reverse LV remodelling with larger reductions in LVM, concentric remodelling and pericardial restraint than LAGB
Transcription profiling of HCN-channel isotypes throughout mouse cardiac development
Hyperpolarization-activated ion channels, encoded by four mammalian genes (HCN1-4), contribute in an important way to the cardiac pacemaker current If. Here, we describe the transcription profiles of the four HCN genes, the NRSF, KCNE2 and Kir2.1 genes from embryonic stage E9.5 dpc to postnatal day 120 in the mouse. Embryonic atrium and ventricle revealed abundant HCN4 transcription but other HCN transcripts were almost absent. Towards birth, HCN4 was downregulated in the atrium and almost vanished from the ventricle. After birth, however, HCN isotype transcription changed remarkably, showing increased levels of HCN1, HCN2 and HCN4 in the atrium and of HCN2 and HCN4 in the ventricle. HCN3 showed highest transcription at early embryonic stages and was hardly detectable thereafter. At postnatal day 10, HCN4 was highest in the sinoatrial node, being twofold higher than HCN1 and fivefold higher than HCN2. In the atrium, HCN4 was similar to HCN1 and sevenfold higher than HCN2. In the ventricle, in contrast, HCN2 was sixfold higher than HCN4, while HCN1 was absent. Subsequently all HCN isotype transcripts declined to lower adult levels, while ratios of HCN isotypes remained stable. In conclusion, substantial changes of HCN isotype transcription throughout cardiac development suggest that a regulated pattern of HCN isotypes is required to establish and ensure a stable heart rhythm. Furthermore, constantly low HCN transcription in adult myocardium may be required to prevent atrial and ventricular arrhythmogenesis
Enhancing Code Based Zero-knowledge Proofs using Rank Metric
The advent of quantum computers is a threat to most currently deployed cryptographic primitives. Among these, zero-knowledge proofs play an important role, due to their numerous applications. The primitives and protocols presented in this work base their security on the difficulty of solving the Rank Syndrome Decoding (RSD) problem. This problem is believed to be hard even in the quantum model. We first present a perfectly binding commitment scheme. Using this scheme, we are able to build an interactive zero-knowledge proof to prove: the knowledge of a valid opening of a committed value, and that the valid openings of three committed values satisfy a given linear relation, and, more generally, any bitwise relation. With the above protocols it becomes possible to prove the relation of two committed values for an arbitrary circuit, with quasi-linear communication complexity and a soundness error of 2/3. To our knowledge, this is the first quantum resistant zero-knowledge protocol for arbitrary circuits based on the RSD problem. An important contribution of this work is the selection of a set of parameters, and an a full implementation, both for our proposal in the rank metric and for the original LPN based one by Jain et. al in the Hamming metric, from which we took the inspiration. Beside demonstrating the practicality of both constructions, we provide evidence of the convenience of rank metric, by reporting performance benchmarks and a detailed comparison
- …