169 research outputs found

    The g − 2 experiment

    Get PDF
    This paper briefly describes the main features of the muon g − 2 experiment E989 at Fermilab. The experiment aims to measure the muon anomaly with a 140 ppb accuracy, improving by a factor 4 last measurement done at BNL (E821), and potentially revealing new physics beyond the Standard Model

    Formation of ultracold RbCs molecules by photoassociation

    Full text link
    The formation of ultracold metastable RbCs molecules is observed in a double species magneto-optical trap through photoassociation below the ^85Rb(5S_1/2)+^133Cs(6P_3/2) dissociation limit followed by spontaneous emission. The molecules are detected by resonance enhanced two-photon ionization. Using accurate quantum chemistry calculations of the potential energy curves and transition dipole moment, we interpret the observed photoassociation process as occurring at short internuclear distance, in contrast with most previous cold atom photoassociation studies. The vibrational levels excited by photoassociation belong to the 5th 0^+ or the 4th 0^- electronic states correlated to the Rb(5P_1/2,3/2)+Cs(6S_1/2) dissociation limit. The computed vibrational distribution of the produced molecules shows that they are stabilized in deeply bound vibrational states of the lowest triplet state. We also predict that a noticeable fraction of molecules is produced in the lowest level of the electronic ground state

    Photoionization of ultracold and Bose-Einstein condensed Rb atoms

    Full text link
    Photoionization of a cold atomic sample offers intriguing possibilities to observe collective effects at extremely low temperatures. Irradiation of a rubidium condensate and of cold rubidium atoms within a magneto-optical trap with laser pulses ionizing through 1-photon and 2-photon absorption processes has been performed. Losses and modifications in the density profile of the remaining trapped cold cloud or the remaining condensate sample have been examined as function of the ionizing laser parameters. Ionization cross-sections were measured for atoms in a MOT, while in magnetic traps losses larger than those expected for ionization process were measured.Comment: 9 pages, 7 figure

    Autler-Townes splitting in two-color photoassociation of 6Li

    Full text link
    We report on high-resolution two-color photoassociation spectroscopy in the triplet system of magneto-optically trapped 6Li. The absolute transition frequencies have been measured. Strong optical coupling of the bound molecular states has been observed as Autler-Townes splitting in the photoassociation signal. The spontaneous bound-bound transition rate is determined and the molecule formation rate is estimated. The observed lineshapes are in good agreement with the theoretical model.Comment: 5 pages, 4 figures, accepted for publication in Phys. Rev. A (Rapid Communication

    Saturation in heteronuclear photoassociation of 6Li7Li

    Full text link
    We report heteronuclear photoassociation spectroscopy in a mixture of magneto-optically trapped 6Li and 7Li. Hyperfine resolved spectra of the vibrational level v=83 of the singlet state have been taken up to intensities of 1000 W/cm^2. Saturation of the photoassociation rate has been observed for two hyperfine transitions, which can be shown to be due to saturation of the rate coefficient near the unitarity limit. Saturation intensities on the order of 40 W/cm^2 can be determined.Comment: 5 pages, 3 figures, to appear in Phys. Rev. A (Rapid Communication
    corecore