12 research outputs found

    A robust fault detection method of rolling bearings using modulation signal bispectrum analysis

    Get PDF
    Envelope analysis is a widely used method for bearing fault detection. To obtain high detection accuracy, it is critical to select an optimal narrowband for envelope demodulation. Fast Kurtogram is an effective method for optimal narrowband selection. However, fast Kurtogram is not sufficiently robust because it is very sensitive to random noise and large aperiodic impulses which normally exist in practical application. To achieve the purpose of denoising and frequency band optimization, this paper proposes a new fault detector based on modulation signal bispectrum analysis (MSB) for bearing fault detection. As MSB results highlight the modulation effects by suppressing stationary random noise and discrete aperiodic impulses, the detector developed using high magnitudes of MSB can provide optimal frequency bands for fault detection straightforward. Performance evaluation results using both simulated data and experimental data show that the proposed method produces more effective and robust detection results for different types of bearing faults, compared with optimal envelope analysis using fast Kurtogram

    A Novel Method for the Fault Diagnosis of a Planetary Gearbox based on Residual Sidebands from Modulation Signal Bispectrum Analysis

    Get PDF
    This paper presents a novel method for the fault diagnosis of planetary gearboxes based on an accurate estimation of residual sidebands using a modulation signal bispectrum (MSB). The residual sideband resulting from the out-phase superposition of vibration waves from asymmetrical multiple meshing sources are much less influenced by gear errors than that of the in-phase sidebands. Therefore, with the accurate estimation by MSB they can produce accurate and consistent diagnosis, which are evaluated by both simulating and experimental studies. However, the commonly used in-phase sidebands have high amplitudes but include gear error effects, consequently leading to poor diagnostic results

    Misalignment diagnosis of a planetary gearbox based on vibration analysis

    Get PDF
    As a critical power transmission system, planetary gearbox is widely used in many industrial important machines such as wind turbines, aircraft turbine engines, helicopters. Early fault detection and diagnosis of the gearbox will help to prevent unexpected breakdowns of this important equip-ment. Misalignment is one of the major operating problems in the planetary gearbox which may be caused by inadequate system integration, variable operating conditions and differences of elastic deformations in the system. In this paper, the effect of varying degrees of installation misalignment of planetary gearbox are investigated based on vibration measurements using spectrum analysis and modulation signal bispectrum (MSB) analysis. It has shown that the misalignment can be diagnosed in the low frequency range in which the adverse effect due to co-occurrence of amplitude modula-tion and frequency modulation (AM-FM) effect is low compared with the components around meshing frequencies. Moreover, MSB produces a more accurate and reliable diagnosis in that it gives correct indication of the fault severity and location for all operating conditions. In contrast, spectrum can produce correct results for some of the operating conditions. Keywords: Planetary gearbox, Condition Monitoring, Misalignment, Modulation signal bispectrum

    Planetary gearbox condition monitoring based on modulation analysis

    Get PDF
    The epicycle gearbox or planetary gearbox (PG) is a central power transmission systems of important machines such as helicopters and wind turbines which are mission critical and high cost systems. Condition monitoring (CM) has been explored extensively in recent years to avoid any unexpected interruptions and severe accidences caused by faults PGs. Although, considerable advancements in CM techniques, there still existed significant deficiency such as insensitivity, false diagnosis and high costs in implementing such techniques in industries. To improve CM techniques, therefore, this thesis focuses on an investigation of advanced signal analysis techniques such as higher order spectra (HOS) in order to achieve full characterisation of the nonlinear modulation processes of PG dynamics and thereby develop accurate diagnostic techniques. The lumped mass model is established for modelling the dynamic behaviour of the PG under investigation, which allows the vibration behaviours to be understood for analysing different abnormalities such as tooth breakages and gear errors. This paves the way for subsequent data analytics and fault diagnostics using modulation signal bispectrum (MSB) that allows the vibration data to be examined through HOS, but it is significantly efficient in characterising the multiple and nonlinear modulations of PG dynamics alongside superior noise reduction performance. Different degrees of misalignments in the PG drive system has been investigated and successfully diagnosed using MSB analysis of vibration measurements.. Moreover, the investigation included detection of tooth breakage faults of different severities in both the sun and a planet gear. The tooth faults were diagnosed using the recently developed MSB through accurately representation and estimate of residual sidebands induced by these faults. Consequently, MSB analysis produces an accurate and reliable diagnosis in that it gives correct indication of the fault severity and location for wide operating conditions. Furthermore, these fault diagnosis practices allows the establishment of residual sideband analysis approach. These residual sidebands resulting from the out-of-phase superposition of vibration waves due to asymmetric, multiple meshing sources are much less influenced by gear errors than the in-phase sidebands due to faults or new occurrences of the symmetricity. MSB can provide an accurate characterisation of the residual sidebands and consequently produces consistent diagnosis as confirmed by both simulation and experiment

    A robust detector for rolling element bearing condition monitoring based on the modulation signal bispectrum and its performance evaluation against the Kurtogram

    Get PDF
    Envelope analysis is a widely used method for rolling element bearing fault detection. To obtain high detection accuracy, it is critical to determine an optimal frequency narrowband for the envelope demodulation. However, many of the schemes which are used for the narrowband selection, such as the Kurtogram, can produce poor detection results because they are sensitive to random noise and aperiodic impulses which normally occur in practical applications. To achieve the purposes of denoising and frequency band optimisation, this paper proposes a novel modulation signal bispectrum (MSB) based robust detector for bearing fault detection. Because of its inherent noise suppression capability, the MSB allows effective suppression of both stationary random noise and discrete aperiodic noise. The high magnitude features that result from the use of the MSB also enhance the modulation effects of a bearing fault and can be used to provide optimal frequency bands for fault detection. The Kurtogram is generally accepted as a powerful means of selecting the most appropriate frequency band for envelope analysis, and as such it has been used as the benchmark comparator for performance evaluation in this paper. Both simulated and experimental data analysis results show that the proposed method produces more accurate and robust detection results than Kurtogram based approaches for common bearing faults under a range of representative scenarios

    Study of the Emitted Dose After Two Separate Inhalations at Different Inhalation Flow Rates and Volumes and an Assessment of Aerodynamic Characteristics of Indacaterol Onbrez Breezhaler® 150 and 300 μg

    Get PDF
    Onbrez Breezhaler® is a low-resistance capsule-based device that was developed to deliver indacaterol maleate. The study was designed to investigate the effects of both maximum flow rate (MIF) and inhalation volume (Vin) on the dose emission of indacaterol 150 and 300 μg dose strengths after one and two inhalations using dose unit sampling apparatus (DUSA) as well as to study the aerodynamic characteristics of indacaterol Breezhaler® using the Andersen cascade impactor (ACI) at a different set of MIF and Vin. Indacaterol 150 and 300 μg contain equal amounts of lactose per carrier. However, 150 μg has the smallest carrier size. The particle size distribution (PSD) of indacaterol DPI formulations 150 and 300 μg showed that the density of fine particles increased with the increase of the primary pressure. For both strengths (150 μg and 300 μg), ED1 increased and ED2 decreased when the inhalation flow rate and inhaled volume increased. The reduction in ED1 and subsequent increase in ED2 was such that when the Vin is greater than 1 L, then 60 L/min could be regarded as the minimum MIF. The Breezhaler was effective in producing respirable particles with an MMAD ≤5 μm irrespective of the inhalation flow rate, but the mass fraction of particles with an aerodynamic diameter <3 μm is more pronounced between 60 and 90 L/min. The dose emission of indacaterol was comparable for both dose strengths 150 and 300 μg. These in vitro results suggest that a minimum MIF of 60 L/min is required during routine use of Onbrez Breezhaler®, and confirm the good practice to make two separate inhalations from the same dose

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    Get PDF
    Background Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide.Methods A multimethods analysis was performed as part of the GlobalSurg 3 study-a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital.Findings Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3.85 [95% CI 2.58-5.75]; p&lt;0.0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63.0% vs 82.7%; OR 0.35 [0.23-0.53]; p&lt;0.0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer.Interpretation Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised

    Fault Detection and Diagnosis of Ball Bearing Using Advanced Vibration Analysis Techniques

    Get PDF
    This poster summarises the progress which has been made from 1st April 2012 to 1st Mar 2013 in fulfilling the PhD research project of condition monitoring of bearing condition monitoring based on advanced vibration data analysis For improve production efficiency fault detection and diagnosis of the critical components such as bearings in the rotating machinery including compressors, pumps, power turbines and aircrafts engines are becoming very important area of research, which helps to avoid unexpected shutdowns due to a faulty process. This poster presents data analysis techniques for rotating machinery, bearing types, failure and the performance of methods for failure detection in ball bearings. Different kinds of faults have been created in the ball bearing such as (Inner race fault and Outer race fault), and a raw signal of the healthy and faulty has been acquired and recorded. The vibration signals were taken at different loads such as (0%, 25%, 50%, and 75%). Monitored vibration of motor-generator system supported by deep grove ball bearings to predict bearing failures. It successfully identified failures of the ball bearing for both outer and inner races. The interim result shows that the envelope analysis spectrum gives more diagnostic information than analysis of the time domain or frequency domain

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    Get PDF
    Background: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit
    corecore