81 research outputs found

    Endometrial cells sense and react to tissue damage during infection of the bovine endometrium via interleukin 1

    Get PDF
    Cells generate inflammatory responses to bacteria when pattern recognition receptors bind pathogen-associated molecules such as lipopolysaccharide. Cells may also respond to tissue damage by sensing damage-associated molecules. Postpartum bacterial infections of the bovine uterus cause endometritis but the risk of disease is increased by tissue trauma triggered by dystocia. Animals that suffered dystocia had increased concentrations of inflammatory mediators IL-8, IL-1β and IL-1α in vaginal mucus 3 weeks postpartum, but they also had more bacteria than normal animals. Ex vivo organ cultures of endometrium, endometrial cells and peripheral blood monocytes did not generate inflammatory responses to prototypical damage molecules, HMGB1 or hyaluronan, or to necrotic cells; although they secreted IL-6 and IL-8 in a concentration-dependent manner when treated with IL-1α. However, necrotic endometrial cells did not accumulate intracellular IL-1α or release IL-1α, except when pre-treated with lipopolysaccharide or bacteria. Endometrial cell inflammatory responses to IL-1α were dependent on the cognate receptor IL-1R1, and the receptor adaptor protein MyD88, and the inflammatory response to IL-1α was independent of the response to lipopolysaccharide. Rather than a typical damage-associated molecule, IL-1α acts to scale the inflammatory response in recognition that there is a combination of pathogen challenge followed by endometrial cell damage

    Genetic Evidence for Single-Strand Lesions Initiating Nbs1-Dependent Homologous Recombination in Diversification of Ig V in Chicken B Lymphocytes

    Get PDF
    Homologous recombination (HR) is initiated by DNA double-strand breaks (DSB). However, it remains unclear whether single-strand lesions also initiate HR in genomic DNA. Chicken B lymphocytes diversify their Immunoglobulin (Ig) V genes through HR (Ig gene conversion) and non-templated hypermutation. Both types of Ig V diversification are initiated by AID-dependent abasic-site formation. Abasic sites stall replication, resulting in the formation of single-stranded gaps. These gaps can be filled by error-prone DNA polymerases, resulting in hypermutation. However, it is unclear whether these single-strand gaps can also initiate Ig gene conversion without being first converted to DSBs. The Mre11-Rad50-Nbs1 (MRN) complex, which produces 3′ single-strand overhangs, promotes the initiation of DSB-induced HR in yeast. We show that a DT40 line expressing only a truncated form of Nbs1 (Nbs1p70) exhibits defective HR-dependent DSB repair, and a significant reduction in the rate—though not the fidelity—of Ig gene conversion. Interestingly, this defective gene conversion was restored to wild type levels by overproduction of Escherichia coli SbcB, a 3′ to 5′ single-strand–specific exonuclease, without affecting DSB repair. Conversely, overexpression of chicken Exo1 increased the efficiency of DSB-induced gene-targeting more than 10-fold, with no effect on Ig gene conversion. These results suggest that Ig gene conversion may be initiated by single-strand gaps rather than by DSBs, and, like SbcB, the MRN complex in DT40 may convert AID-induced lesions into single-strand gaps suitable for triggering HR. In summary, Ig gene conversion and hypermutation may share a common substrate—single-stranded gaps. Genetic analysis of the two types of Ig V diversification in DT40 provides a unique opportunity to gain insight into the molecular mechanisms underlying the filling of gaps that arise as a consequence of replication blocks at abasic sites, by HR and error-prone polymerases

    Gut mucosal DAMPs in IBD: From mechanisms to therapeutic implications

    Get PDF
    Endogenous damage-associated molecular patterns (DAMPs) are released during tissue damage and have increasingly recognized roles in the etiology of many human diseases. The inflammatory bowel diseases (IBD), ulcerative colitis (UC) and Crohn’s disease (CD), are immune-mediated conditions where high levels of DAMPs are observed. DAMPs such as calprotectin (S100A8/9) have an established clinical role as a biomarker in IBD. In this review, we use IBD as an archetypal common chronic inflammatory disease to focus on the conceptual and evidential importance of DAMPs in pathogenesis and why DAMPs represent an entirely new class of targets for clinical translation. </p

    Is the inflammasome a potential therapeutic target in renal disease?

    Get PDF
    The inflammasome is a large, multiprotein complex that drives proinflammatory cytokine production in response to infection and tissue injury. Pattern recognition receptors that are either membrane bound or cytoplasmic trigger inflammasome assembly. These receptors sense danger signals including damage-associated molecular patterns and pathogen-associated molecular patterns (DAMPS and PAMPS respectively). The best-characterized inflammasome is the NLRP3 inflammasome. On assembly of the NLRP3 inflammasome, post-translational processing and secretion of pro-inflammatory cytokines IL-1β and IL-18 occurs; in addition, cell death may be mediated via caspase-1. Intrinsic renal cells express components of the inflammasome pathway. This is most prominent in tubular epithelial cells and, to a lesser degree, in glomeruli. Several primary renal diseases and systemic diseases affecting the kidney are associated with NLRP3 inflammasome/IL-1β/IL-18 axis activation. Most of the disorders studied have been acute inflammatory diseases. The disease spectrum includes ureteric obstruction, ischaemia reperfusion injury, glomerulonephritis, sepsis, hypoxia, glycerol-induced renal failure, and crystal nephropathy. In addition to mediating renal disease, the IL-1/ IL-18 axis may also be responsible for development of CKD itself and its related complications, including vascular calcification and sepsis. Experimental models using genetic deletions and/or receptor antagonists/antiserum against the NLRP3 inflammasome pathway have shown decreased severity of disease. As such, the inflammasome is an attractive potential therapeutic target in a variety of renal diseases

    Estimates of global, regional, and national incidence, prevalence, and mortality of HIV, 1980-2015 : the Global Burden of Disease Study 2015

    Get PDF
    Background Timely assessment of the burden of HIV/AIDS is essential for policy setting and programme evaluation. In this report from the Global Burden of Disease Study 2015 (GBD 2015), we provide national estimates of levels and trends of HIV/AIDS incidence, prevalence, coverage of antiretroviral therapy (ART), and mortality for 195 countries and territories from 1980 to 2015. Methods For countries without high-quality vital registration data, we estimated prevalence and incidence with data from antenatal care clinics and population-based seroprevalence surveys, and with assumptions by age and sex on initial CD4 distribution at infection, CD4 progression rates (probability of progression from higher to lower CD4 cell-count category), on and off antiretroviral therapy (ART) mortality, and mortality from all other causes. Our estimation strategy links the GBD 2015 assessment of all-cause mortality and estimation of incidence and prevalence so that for each draw from the uncertainty distribution all assumptions used in each step are internally consistent. We estimated incidence, prevalence, and death with GBD versions of the Estimation and Projection Package (EPP) and Spectrum software originally developed by the Joint United Nations Programme on HIV/AIDS (UNAIDS). We used an open-source version of EPP and recoded Spectrum for speed, and used updated assumptions from systematic reviews of the literature and GBD demographic data. For countries with high-quality vital registration data, we developed the cohort incidence bias adjustment model to estimate HIV incidence and prevalence largely from the number of deaths caused by HIV recorded in cause-of-death statistics. We corrected these statistics for garbage coding and HIV misclassification. Findings Global HIV incidence reached its peak in 1997, at 3.3 million new infections (95% uncertainty interval [UI] 3.1-3.4 million). Annual incidence has stayed relatively constant at about 2.6 million per year (range 2.5-2.8 million) since 2005, after a period of fast decline between 1997 and 2005. The number of people living with HIV/AIDS has been steadily increasing and reached 38.8 million (95% UI 37.6-40.4 million) in 2015. At the same time, HIV/AIDS mortality has been declining at a steady pace, from a peak of 1.8 million deaths (95% UI 1.7-1.9 million) in 2005, to 1.2 million deaths (1.1-1.3 million) in 2015. We recorded substantial heterogeneity in the levels and trends of HIV/AIDS across countries. Although many countries have experienced decreases in HIV/AIDS mortality and in annual new infections, other countries have had slowdowns or increases in rates of change in annual new infections. Interpretation Scale-up of ART and prevention of mother-to-child transmission has been one of the great successes of global health in the past two decades. However, in the past decade, progress in reducing new infections has been slow, development assistance for health devoted to HIV has stagnated, and resources for health in low-income countries have grown slowly. Achievement of the new ambitious goals for HIV enshrined in Sustainable Development Goal 3 and the 90-90-90 UNAIDS targets will be challenging, and will need continued efforts from governments and international agencies in the next 15 years to end AIDS by 2030. Copyright (C) The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY licensePeer reviewe

    Catalytic activity and stability of laccase entrapped in sol-gel silica with additives

    Get PDF
    This study investigated the effects of different additives and precursors on the catalytic activity of laccase entrapped in sol-gel silica. It was found that the laccase catalytic activity and stability of sol-gel laccase could be enhanced if the entrapment was performed in the presence of additives such as PVA, PEG and APTS. The use of TEOS as a precursor showed slightly higher laccase catalytic activity compared to TMOS. The PVA as an additive showed a better catalytic activity enhancement compared to the PEG and APTMS with the optimum PVA concentration of 0.03 mg/mL. The optimal temperatures of sol-gel laccase without and with additives were found to be at 40 and 27°C, respectively. After 70 days of storage at 27°C, the catalytic activity of the immobilized sol-gel laccase with additives maintained its catalytic activity compared to only 30% of its original catalytic activity for the sol-gel laccase without additives
    corecore