4,106 research outputs found

    Scalar Field Dark Matter: head-on interaction between two structures

    Get PDF
    In this manuscript we track the evolution of a system consisting of two self-gravitating virialized objects made of a scalar field in the newtonian limit. The Schr\"odinger-Poisson system contains a potential with self-interaction of the Gross-Pitaevskii type for Bose Condensates. Our results indicate that solitonic behavior is allowed in the scalar field dark matter model when the total energy of the system is positive, that is, the two blobs pass through each other as should happen for solitons; on the other hand, there is a true collision of the two blobs when the total energy is negative.Comment: 8 revtex pages, 11 eps figures. v2 matches the published version. v2=v1+ref+minor_change

    Scalar Field Dark Matter: non-spherical collapse and late time behavior

    Get PDF
    We show the evolution of non-spherically symmetric balls of a self-gravitating scalar field in the Newtonian regime or equivalently an ideal self-gravitating condensed Bose gas. In order to do so, we use a finite differencing approximation of the Shcr\"odinger-Poisson (SP) system of equations with axial symmetry in cylindrical coordinates. Our results indicate: 1) that spherically symmetric ground state equilibrium configurations are stable against non-spherical perturbations and 2) that such configurations of the SP system are late-time attractors for non-spherically symmetric initial profiles of the scalar field, which is a generalization of such behavior for spherically symmetric initial profiles. Our system and the boundary conditions used, work as a model of scalar field dark matter collapse after the turnaround point. In such case, we have found that the scalar field overdensities tolerate non-spherical contributions to the profile of the initial fluctuation.Comment: 8 revtex pages, 10 eps figures. Accepted for publication in PR

    WISE morphological study of Wolf-Rayet nebulae

    Full text link
    We present a morphological study of nebulae around Wolf-Rayet (WR) stars using archival narrow-band optical and Wide-field Infrared Survey Explorer (WISE) infrared images. The comparison among WISE images in different bands and optical images proves to be a very efficient procedure to identify the nebular emission from WR nebulae, and to disentangle it from that of the ISM material along the line of sight. In particular, WR nebulae are clearly detected in the WISE W4 band at 22 μ\mum. Analysis of available mid-IR Spitzer spectra shows that the emission in this band is dominated by thermal emission from dust spatially coincident with the thin nebular shell or most likely with the leading edge of the nebula. The WR nebulae in our sample present different morphologies that we classified into well defined WR bubbles (bubble B{\cal B}-type nebulae), clumpy and/or disrupted shells (clumpy/disrupted C{\cal C}-type nebulae), and material mixed with the diffuse medium (mixed M{\cal M}-type nebulae). The variety of morphologies presented by WR nebulae shows a loose correlation with the central star spectral type, implying that the nebular and stellar evolutions are not simple and may proceed according to different sequences and time-lapses. We report the discovery of an obscured shell around WR35 only detected in the infrared.Comment: 11 pages, 6 figures, plus 23 appendix figures; to appear in Astronomy and Astrophysic

    Optical Absorptivity versus Molecular Composition of Model Organic Aerosol Matter

    Get PDF
    Aerosol particles affect the Earth’s energy balance by absorbing and scattering radiation according to their chemical composition, size, and shape. It is generally believed that their optical properties could be deduced from the molecular composition of the complex organic matter contained in these particles, a goal pursued by many groups via high-resolution mass spectrometry, although: (1) absorptivity is associated with structural chromophores rather than with molecular formulas, (2) compositional space is a small projection of structural space, and (3) mixtures of polar polyfunctional species usually exhibit supramolecular interactions. Here we report a suite of experiments showing that the photolysis of aqueous pyruvic acid (a proxy for aerosol α-dicarbonyls absorbing at λ > 300 nm) generates mixtures of identifiable aliphatic polyfunctional oligomers that develop absorptions in the visible upon standing in the dark. These absorptions and their induced fluorescence emissions can be repeatedly bleached and retrieved without carbon loss or ostensible changes in the electrospray mass spectra of the corresponding mixtures and display unambiguous signatures of supramolecular effects. The nonlinear additivity of the properties of the components of these mixtures supports the notion that full structural speciation is insufficient and possibly unnecessary for understanding the optical properties of aerosol particles and their responses to changing ambient conditions

    Effective shell model Hamiltonians from density functional theory: quadrupolar and pairing correlations

    Full text link
    We describe a procedure for mapping a self-consistent mean-field theory (also known as density functional theory) into a shell model Hamiltonian that includes quadrupole-quadrupole and monopole pairing interactions in a truncated space. We test our method in the deformed N=Z sd-shell nuclei Ne-20, Mg-24 and Ar-36, starting from the Hartree-Fock plus BCS approximation of the USD shell model interaction. A similar procedure is then followed using the SLy4 Skyrme energy density functional in the particle-hole channel plus a zero-range density-dependent force in the pairing channel. Using the ground-state solution of this density functional theory at the Hartree-Fock plus BCS level, an effective shell model Hamiltonian is constructed. We use this mapped Hamiltonian to extract quadrupolar and pairing correlation energies beyond the mean field approximation. The rescaling of the mass quadrupole operator in the truncated shell model space is found to be almost independent of the coupling strength used in the pairing channel of the underlying mean-field theory.Comment: 15 pages, 5 figure

    Thermochromism of Model Organic Aerosol Matter

    Get PDF
    Laboratory experiments show that the optical absorptivity of model organic matter is not an intrinsic property, but a strong function of relative humidity, temperature, and insolation. Suites of representative polyfunctional C_(x)H_(y)O_(z) oligomers in water develop intense visible absorptions upon addition of inert electrolytes. The resulting mixtures reach mass absorption cross sections σ(532 nm) ~ 0.1 m^(2)/gC in a few hours, absorb up to 9 times more solar radiation than the starting material, can be half-bleached by noon sunlight in ~ 1 h, and can be repeatedly recycled without carbon loss. Visible absorptions red-shift and evolve increasingly faster in subsequent thermal aging cycles. Thermochromism and its strong direct dependences on ionic strength and temperature are ascribed to the dehydration of >CH−C(OH)C═C< unsaturations by a polar E1 mechanism, and bleaching to photoinduced retrohydration. These transformations are deemed to underlie the daily cycles of aerosol absorption observed in the field, and may introduce a key feedback in the earth’s radiative balance
    corecore