14 research outputs found

    Fast high-resolution prediction of multi-phase flow in fractured formations

    No full text
    The success of a thermal water flood for enhanced oil recovery (EOR) depends on a detailed representation of the geometrical and hydraulic properties of the fracture network, which induces discrete, channelized flow behavior. The resulting high-resolution model is typically computationally very demanding. Here, we use the Proper Orthogonal Decomposition Mapping Method to reconstruct high-resolution solutions based on efficient low-resolution solutions. The method requires training a reduced order model (ROM) using high- and low-resolution solutions determined for a relatively short simulation time. For a cyclic EOR operation, the oil production rate and the heterogeneous structure of the oil saturation are accurately reproduced even after 105 cycles, reducing the computational cost by at least 85%. The method described is general and can be potentially utilized with any multiphase flow model

    Accurate and efficient prediction of fine-resolution hydrologic and carbon dynamic simulations from coarse-resolution models

    No full text
    The topography, and the biotic and abiotic parameters are typically upscaled to make watershed-scale hydrologic-biogeochemical models computationally tractable. However, upscaling procedure can produce biases when nonlinear interactions between different processes are not fully captured at coarse resolutions. Here we applied the Proper Orthogonal Decomposition Mapping Method (PODMM) to downscale the field solutions from a coarse (7 km) resolution grid to a fine (220 m) resolution grid. PODMM trains a reduced-order model (ROM) with coarse-resolution and fine-resolution solutions, here obtained using PAWS+CLM, a quasi-3-D watershed processes model that has been validated for many temperate watersheds. Subsequent fine-resolution solutions were approximated based only on coarse-resolution solutions and the ROM. The approximation errors were efficiently quantified using an error estimator. By jointly estimating correlated variables and temporally varying the ROM parameters, we further reduced the approximation errors by up to 20%. We also improved the method's robustness by constructing multiple ROMs using different set of variables, and selecting the best approximation based on the error estimator. The ROMs produced accurate downscaling of soil moisture, latent heat flux, and net primary production with O(1000) reduction in computational cost. The subgrid distributions were also nearly indistinguishable from the ones obtained using the fine-resolution model. Compared to coarse-resolution solutions, biases in upscaled ROM solutions were reduced by up to 80%. This method has the potential to help address the long-standing spatial scaling problem in hydrology and enable long-time integration, parameter estimation, and stochastic uncertainty analysis while accurately representing the heterogeneities

    iTOUGH2: A multiphysics simulation-optimization framework for analyzing subsurface systems

    No full text
    iTOUGH2 is a simulation-optimization framework for the TOUGH suite of nonisothermal multiphase flow models and related simulators of geophysical, geochemical, and geomechanical processes. After appropriate parameterization of subsurface structures and their properties, iTOUGH2 runs simulations for multiple parameter sets and analyzes the resulting output for parameter estimation through automatic model calibration, local and global sensitivity analyses, data-worth analyses, and uncertainty propagation analyses. Development of iTOUGH2 is driven by scientific challenges and user needs, with new capabilities continually added to both the forward simulator and the optimization framework. This review article provides a summary description of methods and features implemented in iTOUGH2, and discusses the usefulness and limitations of an integrated simulation-optimization workflow in support of the characterization and analysis of complex multiphysics subsurface systems

    Incomplete mixing in porous media: Todd-Longstaff upscaling approach versus a dynamic local grid refinement method

    No full text
    Field-scale simulation of flow in porous media in presence of incomplete mixing demands for high-resolution computational grids, much beyond the scope of state-of-the-art simulators. Hence, the upscaling-based Todd and Longstaff (TL) approach is typically used, where coarse grid cells are employed with effective mixing fluid properties and parameters found by matching results obtained with fully resolved reference simulations. Dynamic local grid refinement (DLGR) techniques, on the other hand, only employ fine-scale grid resolution where the fully mixed assumption is not valid. The rest of the domain is then solved at coarser resolutions, where the fully mixed assumption is valid. Here, we assess the accuracy and the robustness of DLGR- and TL-based simulations of miscible displacements in homogeneous and heterogeneous porous media. Due to the intrinsic uncertainty within the unstable displacement nature of the studied incomplete mixing processes, the performance of the methods is also investigated based on a range of acceptable solutions rather than relying only on a single reference one. Systematic numerical results illustrate that the DLGR method is much more robust and accurate than the upscaling-based TL approach, and employs only a small fraction of fine-scale reference grids. Especially, the TL upscaling results (though history matched with computationally expensive fine-scale results) are very sensitive to the change of the simulation parameters. Based on this study, we propose a dynamic multilevel simulation strategy for efficient and reliable large-scale simulation of the complex incomplete mixing processes.Petroleum Engineerin
    corecore