4,966 research outputs found
Observation of tunable exchange bias in SrYbRuO
The double perovskite compound, SrYbRuO, displays reversal in the
orientation of magnetic moments along with negative magnetization due to an
underlying magnetic compensation phenomenon. The exchange bias (EB) field below
the compensation temperature could be the usual negative or the positive
depending on the initial cooling field. This EB attribute has the potential of
getting tuned in a preselected manner, as the positive EB field is seen to
crossover from positive to negative value above .Comment: 4 Pages, 4 Figure
Noise in Grover's Quantum Search Algorithm
Grover's quantum algorithm improves any classical search algorithm. We show
how random Gaussian noise at each step of the algorithm can be modelled easily
because of the exact recursion formulas available for computing the quantum
amplitude in Grover's algorithm. We study the algorithm's intrinsic robustness
when no quantum correction codes are used, and evaluate how much noise the
algorithm can bear with, in terms of the size of the phone book and a desired
probability of finding the correct result. The algorithm loses efficiency when
noise is added, but does not slow down. We also study the maximal noise under
which the iterated quantum algorithm is just as slow as the classical
algorithm. In all cases, the width of the allowed noise scales with the size of
the phone book as N^-2/3.Comment: 17 pages, 2 eps figures. Revised version. To be published in PRA,
December 199
Mimicking Time Evolution within a Quantum Ground State: Ground-State Quantum Computation, Cloning, and Teleportation
Ground-state quantum computers mimic quantum mechanical time evolution within
the amplitudes of a time-independent quantum state. We explore the principles
that constrain this mimicking. A no-cloning argument is found to impose strong
restrictions. It is shown, however, that there is flexibility that can be
exploited using quantum teleportation methods to improve ground-state quantum
computer design.Comment: 10 pages, 7 figure
Approximate quantum counting on an NMR ensemble quantum computer
We demonstrate the implementation of a quantum algorithm for estimating the
number of matching items in a search operation using a two qubit nuclear
magnetic resonance (NMR) quantum computer.Comment: 4 pages LaTeX/RevTex including 4 figures (3 LaTeX, 1 PostScript).
Submitted to Physical Review Letter
Implementation of quantum search algorithm using classical Fourier optics
We report on an experiment on Grover's quantum search algorithm showing that
{\em classical waves} can search a -item database as efficiently as quantum
mechanics can. The transverse beam profile of a short laser pulse is processed
iteratively as the pulse bounces back and forth between two mirrors. We
directly observe the sought item being found in iterations, in
the form of a growing intensity peak on this profile. Although the lack of
quantum entanglement limits the {\em size} of our database, our results show
that entanglement is neither necessary for the algorithm itself, nor for its
efficiency.Comment: 4 pages, 3 figures; minor revisions plus extra referenc
Magnetic screening in proximity effect Josephson-junction arrays
The modulation with magnetic field of the sheet inductance measured on
proximity effect Josephson-junction arrays (JJAs) is progressively vanishing on
lowering the temperature, leading to a low temperature field-independent
response. This behaviour is consistent with the decrease of the two-dimensional
penetration length below the lattice parameter. Low temperature data are
quantitatively compared with theoretical predictions based on the XY model in
absence of thermal fluctuations. The results show that the description of a JJA
within the XY model is incomplete and the system is put well beyond the weak
screening limit which is usually assumed in order to invoke the well known
frustrated XY model describing classical Josephson-junction arrays.Comment: 6 pages, 5 figure
New Samarium and Neodymium based admixed ferromagnets with near zero net magnetization and tunable exchange bias field
Rare earth based intermetallics, SmScGe and NdScGe, are shown to exhibit near
zero net magnetization with substitutions of 6 to 9 atomic percent of Nd and 25
atomic percent of Gd, respectively. The notion of magnetic compensation in them
is also elucidated by the crossover of zero magnetization axis at low magnetic
fields (less than 103 Oe) and field-induced reversal in the orientation of the
magnetic moments of the dissimilar rare earth ions at higher magnetic fields.
These magnetically ordered materials with no net magnetization and appreciable
conduction electron polarization display an attribute of an exchange bias
field, which can be tuned. The attractively high magnetic ordering temperatures
of about 270 K, underscore the importance of these materials for potential
applications in spintronics.Comment: 6 page text + 5 figure
Quantum Analogue Computing
We briefly review what a quantum computer is, what it promises to do for us,
and why it is so hard to build one. Among the first applications anticipated to
bear fruit is quantum simulation of quantum systems. While most quantum
computation is an extension of classical digital computation, quantum
simulation differs fundamentally in how the data is encoded in the quantum
computer. To perform a quantum simulation, the Hilbert space of the system to
be simulated is mapped directly onto the Hilbert space of the (logical) qubits
in the quantum computer. This type of direct correspondence is how data is
encoded in a classical analogue computer. There is no binary encoding, and
increasing precision becomes exponentially costly: an extra bit of precision
doubles the size of the computer. This has important consequences for both the
precision and error correction requirements of quantum simulation, and
significant open questions remain about its practicality. It also means that
the quantum version of analogue computers, continuous variable quantum
computers (CVQC) becomes an equally efficient architecture for quantum
simulation. Lessons from past use of classical analogue computers can help us
to build better quantum simulators in future.Comment: 10 pages, to appear in the Visions 2010 issue of Phil. Trans. Roy.
Soc.
Quantum Chinos Game: winning strategies through quantum fluctuations
We apply several quantization schemes to simple versions of the Chinos game.
Classically, for two players with one coin each, there is a symmetric stable
strategy that allows each player to win half of the times on average. A partial
quantization of the game (semiclassical) allows us to find a winning strategy
for the second player, but it is unstable w.r.t. the classical strategy.
However, in a fully quantum version of the game we find a winning strategy for
the first player that is optimal: the symmetric classical situation is broken
at the quantum level.Comment: REVTEX4.b4 file, 3 table
Necessary Condition for the Quantum Adiabatic Approximation
A gapped quantum system that is adiabatically perturbed remains approximately
in its eigenstate after the evolution. We prove that, for constant gap, general
quantum processes that approximately prepare the final eigenstate require a
minimum time proportional to the ratio of the length of the eigenstate path to
the gap. Thus, no rigorous adiabatic condition can yield a smaller cost. We
also give a necessary condition for the adiabatic approximation that depends on
local properties of the path, which is appropriate when the gap varies.Comment: 5 pages, 1 figur
- …