124 research outputs found
In situ solid-liquid extraction enhances recovery of taxadiene from engineered Saccharomyces cerevisiae cell factories
Microbial cell factories express diverse heterologous pathways for the production of a wide range of valuable natural products. However, the recovery and purification of such compounds is a major bottleneck in commercialization. In this study, a novel in situ solid phase adsorption strategy was investigated for enhanced recovery of taxadiene, a precursor to the blockbuster anticancer drug, paclitaxel, from engineered Saccharomyces cerevisiae. A synthetic adsorbent resin (HP-20) was employed to efficiently sequester taxadiene as it was secreted during growth and a carefully optimized desorption solvent was applied following cultivation to maximize recovery of both secreted and intracellular taxadiene, across a range of scales (2 – 250 mL). Resin concentration was found to have an impact on cellular growth, with the high concentration of 12 % (w/v) resulting in fragmentation of the resin beads, which was detrimental to growth. The optimal resin concentration and desorption solvent combination elucidated at microscale (2 mL) resulted in a two-fold improvement in taxadiene titer to 61 ± 8 mg/L, compared to the traditional liquid-liquid extraction approach (dodecane overlay). Taxadiene was found to be distributed evenly between resin beads and biomass. Performance of the optimal process was subsequently investigated through scale-up using controlled mini-bioreactors (250 mL). Here, a comparable taxadiene titer of 76 ± 19 mg/L was achieved despite a 125-fold scale-up in cultivation volume. This represented a 1.4-fold improvement in taxadiene recovery compared to previous mini-bioreactor scale cultivations using the dodecane overlay extraction approach
How acceptable are antiretrovirals for the prevention of sexually transmitted HIV? A review of research on the acceptability of oral pre-exposure prophylaxis and treatment as prevention
Recent research has demonstrated how antiretrovirals (ARVs) could be effective in the prevention of sexually transmitted HIV. We review research on the acceptability of oral pre-exposure prophylaxis (PrEP) and treatment as prevention (TasP) for HIV prevention amongst potential users. We consider with whom, where and in what context this research has been conducted, how acceptability has been approached, and what research gaps remain. Findings from 33 studies show a lack of TasP research, PrEP studies which have focused largely on men who have sex with men (MSM) in a US context, and varied measures of acceptability. In order to identify when, where and for whom PrEP and TasP would be most appropriate and effective, research is needed in five areas: acceptability of TasP to people living with HIV; motivation for PrEP use and adherence; current perceptions and management of risk; the impact of broader social and structural factors; and consistent definition and operationalisation of acceptability which moves beyond adherence
The Cytotoxic Necrotizing Factor of Yersinia pseudotuberculosis (CNFy) is Carried on Extracellular Membrane Vesicles to Host Cells
In this study we show Yersinia pseudotuberculosis secretes membrane vesicles (MVs) that contain different proteins and virulence factors depending on the strain. Although MVs from Y. pseudotuberculosis YPIII and ATCC 29833 had many proteins in common (68.8% of all the proteins identified), those located in the outer membrane fraction differed significantly. For instance, the MVs from Y. pseudotuberculosis YPIII harbored numerous Yersinia outer proteins (Yops) while they were absent in the ATCC 29833 MVs. Another virulence factor found solely in the YPIII MVs was the cytotoxic necrotizing factor (CNFy), a toxin that leads to multinucleation of host cells. The ability of YPIII MVs to transport this toxin and its activity to host cells was verified using HeLa cells, which responded in a dose-dependent manner; nearly 70% of the culture was multinucleated after addition of 5 mu g/ml of the purified YPIII MVs. In contrast, less than 10% were multinucleated when the ATCC 29833 MVs were added. Semi-quantification of CNFy within the YPIII MVs found this toxin is present at concentrations of 5 -10 ng per mu g of total MV protein, a concentration that accounts for the cellular responses see
Quantifying the effects of climate change and water abstraction on a population of barramundi (Lates calcarifer), a diadromous estuarine finfish
Many aquatic species are linked to environmental drivers such as temperature and salinity through processes such as spawning, recruitment and growth. Information is needed on how fished species may respond to altered environmental drivers under climate change so that adaptive management strategies can be developed. Barramundi (Lates calcarifer) is a highly prized species of the Indo-West Pacific, whose recruitment and growth is driven by river discharge. We developed a monthly age- and length-structured population model for barramundi. Monte Carlo Markov Chain simulations were used to explore the population's response to altered river discharges under modelled total licenced water abstraction and projected climate change, derived and downscaled from Global Climate Model A1FI. Mean values of exploitable biomass, annual catch, maximum sustainable yield and spawning stock size were significantly reduced under scenarios where river discharge was reduced; despite including uncertainty. These results suggest that the upstream use of water resources and climate change have potential to significantly reduce downstream barramundi stock sizes and harvests and may undermine the inherent resilience of estuarine-dependent fisheries. © 2012 CSIRO
ANO1 amplification and expression in HNSCC with a high propensity for future distant metastasis and its functions in HNSCC cell lines
BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is associated with poor survival. To identify prognostic and diagnostic markers and therapeutic targets, we studied ANO1, a recently identified calcium-activated chloride channel (CaCC). METHODS: High-resolution genomic and transcriptomic microarray analysis and functional studies using HNSCC cell line and CaCC inhibitors. RESULTS: Amplification and overexpression of genes within the 11q13 amplicon are associated with the propensity for future distance metastasis of HPV-negative HNSCC. ANO1 was selected for functional studies based on high correlations, cell surface expression and CaCC activity. ANO1 overexpression in cells that express low endogenous levels stimulates cell movement, whereas downregulation in cells with high endogenous levels has the opposite effect. ANO1 overexpression also stimulates attachment, spreading, detachment and invasion, which could account for its effects on migration. CaCC inhibitors decrease movement, suggesting that channel activity is required for the effects of ANO1. In contrast, ANO1 overexpression does not affect cell proliferation. INTERPRETATION: ANO1 amplification and expression could be markers for distant metastasis in HNSCC. ANO1 overexpression affects cell properties linked to metastasis. Inhibitors of CaCCs could be used to inhibit the tumourigenic properties of ANO1, whereas activators developed to increase CaCC activity could have adverse effects
High-Resolution Electron Microscopy of Semiconductor Heterostructures and Nanostructures
This chapter briefly describes the fundamentals of high-resolution electron microscopy techniques. In particular, the Peak Pairs approach for strain mapping with atomic column resolution, and a quantitative procedure to extract atomic column compositional information from Z-contrast high-resolution images are presented. It also reviews the structural, compositional, and strain results obtained by conventional and advanced transmission electron microscopy methods on a number of III–V semiconductor nanostructures and heterostructures
- …