5,561 research outputs found
On the role of confinement on solidification in pure materials and binary alloys
We use a phase-field model to study the effect of confinement on dendritic
growth, in a pure material solidifying in an undercooled melt, and in the
directional solidification of a dilute binary alloy. Specifically, we observe
the effect of varying the vertical domain extent () on tip selection,
by quantifying the dendrite tip velocity and curvature as a function of
, and other process parameters. As decreases, we find that the
operating state of the dendrite tips becomes significantly affected by the
presence of finite boundaries. For particular boundary conditions, we observe a
switching of the growth state from 3-D to 2-D at very small , in both
the pure material and alloy. We demonstrate that results from the alloy model
compare favorably with those from an experimental study investigating this
effect.Comment: 13 pages, 9 figures, 3 table
Dual Conformal Properties of Six-Dimensional Maximal Super Yang-Mills Amplitudes
We demonstrate that the tree-level amplitudes of maximal super-Yang-Mills
theory in six dimensions, when stripped of their overall momentum and
supermomentum delta functions, are covariant with respect to the
six-dimensional dual conformal group. Using the generalized unitarity method,
we demonstrate that this property is also present for loop amplitudes. Since
the six-dimensional amplitudes can be interpreted as massive four-dimensional
ones, this implies that the six-dimensional symmetry is also present in the
massively regulated four-dimensional maximal super-Yang-Mills amplitudes.Comment: 20 pages, 3 figures, minor clarification, references update
Direct Sparse Odometry with Rolling Shutter
Neglecting the effects of rolling-shutter cameras for visual odometry (VO)
severely degrades accuracy and robustness. In this paper, we propose a novel
direct monocular VO method that incorporates a rolling-shutter model. Our
approach extends direct sparse odometry which performs direct bundle adjustment
of a set of recent keyframe poses and the depths of a sparse set of image
points. We estimate the velocity at each keyframe and impose a
constant-velocity prior for the optimization. In this way, we obtain a near
real-time, accurate direct VO method. Our approach achieves improved results on
challenging rolling-shutter sequences over state-of-the-art global-shutter VO
Robustness Verification of Support Vector Machines
We study the problem of formally verifying the robustness to adversarial
examples of support vector machines (SVMs), a major machine learning model for
classification and regression tasks. Following a recent stream of works on
formal robustness verification of (deep) neural networks, our approach relies
on a sound abstract version of a given SVM classifier to be used for checking
its robustness. This methodology is parametric on a given numerical abstraction
of real values and, analogously to the case of neural networks, needs neither
abstract least upper bounds nor widening operators on this abstraction. The
standard interval domain provides a simple instantiation of our abstraction
technique, which is enhanced with the domain of reduced affine forms, which is
an efficient abstraction of the zonotope abstract domain. This robustness
verification technique has been fully implemented and experimentally evaluated
on SVMs based on linear and nonlinear (polynomial and radial basis function)
kernels, which have been trained on the popular MNIST dataset of images and on
the recent and more challenging Fashion-MNIST dataset. The experimental results
of our prototype SVM robustness verifier appear to be encouraging: this
automated verification is fast, scalable and shows significantly high
percentages of provable robustness on the test set of MNIST, in particular
compared to the analogous provable robustness of neural networks
MIMOX: a web tool for phage display based epitope mapping
BACKGROUND: Phage display is widely used in basic research such as the exploration of protein-protein interaction sites and networks, and applied research such as the development of new drugs, vaccines, and diagnostics. It has also become a promising method for epitope mapping. Research on new algorithms that assist and automate phage display based epitope mapping has attracted many groups. Most of the existing tools have not been implemented as an online service until now however, making it less convenient for the community to access, utilize, and evaluate them. RESULTS: We present MIMOX, a free web tool that helps to map the native epitope of an antibody based on one or more user supplied mimotopes and the antigen structure. MIMOX was coded in Perl using modules from the Bioperl project. It has two sections. In the first section, MIMOX provides a simple interface for ClustalW to align a set of mimotopes. It also provides a simple statistical method to derive the consensus sequence and embeds JalView as a Java applet to view and manage the alignment. In the second section, MIMOX can map a single mimotope or a consensus sequence of a set of mimotopes, on to the corresponding antigen structure and search for all of the clusters of residues that could represent the native epitope. NACCESS is used to evaluate the surface accessibility of the candidate clusters; and Jmol is embedded to view them interactively in their 3D context. Initial case studies show that MIMOX can reproduce mappings from existing tools such as FINDMAP and 3DEX, as well as providing novel, rational results. CONCLUSION: A web-based tool called MIMOX has been developed for phage display based epitope mapping. As a publicly available online service in this area, it is convenient for the community to access, utilize, and evaluate, complementing other existing programs. MIMOX is freely available at
Lidar-Based Relative Position Estimation and Tracking for Multi-Robot Systems
Relative positioning systems play a vital role in current multi-robot systems. We present a self-contained detection and tracking approach, where a robot estimates a distance (range) and an angle (bearing) to another robot using measurements extracted from the raw data provided by two laser range finders. We propose a method based on the detection of circular features with least-squares fitting and filtering out outliers using a map-based selection. We improve the estimate of the relative robot position and reduce its uncertainty by feeding measurements into a Kalman filter, resulting in an accurate tracking system. We evaluate the performance of the algorithm in a realistic indoor environment to demonstrate its robustness and reliability
In the Shadow of the Transiting Disk: Imaging epsilon Aurigae in Eclipse
Eclipses of the single-line spectroscopic binary star, epsilon Aurigae,
provide an opportunity to study the poorly-defined companion. We used the MIRC
beam combiner on the CHARA array to create interferometric images during
eclipse ingress. Our results demonstrate that the eclipsing body is a dark disk
that is opaque and tilted, and therefore exclude alternative models for the
system. These data constrain the geometry and masses of the components,
providing evidence that the F-star is not a massive supergiant star.Comment: As submitted to Nature. Published in Nature April 8, 2010
Fermionic T-duality in the pp-wave limit
AdS5 X S5 and its pp-wave limit are self-dual under transformations involving
eight fermionic T-dualities, a property which accounts for symmetries seen in
scattering amplitudes in N=4 super-Yang-Mills. Despite strong evidence for
similar symmetries in the amplitudes of three-dimensional N=6 ABJM theory, a
corresponding self-duality in the dual geometry AdS4 X CP3 currently eludes us.
Here, working with the type IIA pp-wave limit of AdS4 X CP3 preserving twenty
four supercharges, we show that the pp-wave is self-dual with respect to eight
commuting fermionic T-dualities and not the six expected. In addition, we show
the same symmetry can be found in a superposition pp-wave and a generic pp-wave
with twenty and sixteen unbroken supersymmetries respectively, strongly
suggesting that self-duality under fermionic T-duality may be a symmetry of all
pp-waves.Comment: 21 pages, typos fixe
Roles for Treg expansion and HMGB1 signaling through the TLR1-2-6 axis in determining the magnitude of the antigen-specific immune response to MVA85A
© 2013 Matsumiya et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedA better understanding of the relationships between vaccine, immunogenicity and protection from disease would greatly facilitate vaccine development. Modified vaccinia virus Ankara expressing antigen 85A (MVA85A) is a novel tuberculosis vaccine candidate designed to enhance responses induced by BCG. Antigen-specific interferon-γ (IFN-γ) production is greatly enhanced by MVA85A, however the variability between healthy individuals is extensive. In this study we have sought to characterize the early changes in gene expression in humans following vaccination with MVA85A and relate these to long-term immunogenicity. Two days post-vaccination, MVA85A induces a strong interferon and inflammatory response. Separating volunteers into high and low responders on the basis of T cell responses to 85A peptides measured during the trial, an expansion of circulating CD4+ CD25+ Foxp3+ cells is seen in low but not high responders. Additionally, high levels of Toll-like Receptor (TLR) 1 on day of vaccination are associated with an increased response to antigen 85A. In a classification model, combined expression levels of TLR1, TICAM2 and CD14 on day of vaccination and CTLA4 and IL2Rα two days post-vaccination can classify high and low responders with over 80% accuracy. Furthermore, administering MVA85A in mice with anti-TLR2 antibodies may abrogate high responses, and neutralising antibodies to TLRs 1, 2 or 6 or HMGB1 decrease CXCL2 production during in vitro stimulation with MVA85A. HMGB1 is released into the supernatant following atimulation with MVA85A and we propose this signal may be the trigger activating the TLR pathway. This study suggests an important role for an endogenous ligand in innate sensing of MVA and demonstrates the importance of pattern recognition receptors and regulatory T cell responses in determining the magnitude of the antigen specific immune response to vaccination with MVA85A in humans.This work was funded by the Wellcome Trust. MM has a Wellcome Trust PhD studentship and HM is a Wellcome Trust Senior Fello
Competing risks analysis for neutrophil to lymphocyte ratio as a predictor of diabetic retinopathy incidence in the Scottish population
Background
Diabetic retinopathy (DR) is a major sight-threatening microvascular complication in individuals with diabetes. Systemic inflammation combined with oxidative stress is thought to capture most of the complexities involved in the pathology of diabetic retinopathy. A high level of neutrophil–lymphocyte ratio (NLR) is an indicator of abnormal immune system activity. Current estimates of the association of NLR with diabetes and its complications are almost entirely derived from cross-sectional studies, suggesting that the nature of the reported association may be more diagnostic than prognostic. Therefore, in the present study, we examined the utility of NLR as a biomarker to predict the incidence of DR in the Scottish population.
Methods
The incidence of DR was defined as the time to the first diagnosis of R1 or above grade in the Scottish retinopathy grading scheme from type 2 diabetes diagnosis. The effect of NLR and its interactions were explored using a competing risks survival model adjusting for other risk factors and accounting for deaths. The Fine and Gray subdistribution hazard model (FGR) was used to predict the effect of NLR on the incidence of DR.
Results
We analysed data from 23,531 individuals with complete covariate information. At 10 years, 8416 (35.8%) had developed DR and 2989 (12.7%) were lost to competing events (death) without developing DR and 12,126 individuals did not have DR. The median (interquartile range) level of NLR was 2.04 (1.5 to 2.7). The optimal NLR cut-off value to predict retinopathy incidence was 3.04. After accounting for competing risks at 10 years, the cumulative incidence of DR and deaths without DR were 50.7% and 21.9%, respectively. NLR was associated with incident DR in both Cause-specific hazard (CSH = 1.63; 95% CI: 1.28–2.07) and FGR models the subdistribution hazard (sHR = 2.24; 95% CI: 1.70–2.94). Both age and HbA1c were found to modulate the association between NLR and the risk of DR.
Conclusions
The current study suggests that NLR has a promising potential to predict DR incidence in the Scottish population, especially in individuals less than 65 years and in those with well-controlled glycaemic status
- …