110 research outputs found
Perturbative Effects in the Form Factor \gamma\gamma^*\to \pi and Extraction of the Pion Wave Function from CLEO Data
We study the pion form factor F^{\pi \gamma\gamma^*}(Q^2) in the light-cone
sum rule approach, accounting for radiative corrections and higher twist
effects.
Comparing the results to the CLEO experimental data on F^{\pi
\gamma\gamma^*}(Q^2), we extract the the pion distribution amplitude of
twist-2. The deviation of the distribution amplitude from the asymptotic one is
small and is estimated to be a_2(\mu) = 0.12 \pm 0.03 at \mu=2.4 GeV, in the
model with one non-asymptotic term. The ansatz with two non-asymptotic terms
gives some region of a_2 and a_4, which is consistent with the asymptotic
distribution amplitude, but does not agree with some old models.Comment: 21 pages, LaTeX, 7 eps figures; (v2): Phys. Rev. D versio
Global relationships in tree functional traits
Due to massive energetic investments in woody support structures, trees are subject to unique physiological, mechanical, and ecological pressures not experienced by herbaceous plants. Despite a wealth of studies exploring trait relationships across the entire plant kingdom, the dominant traits underpinning these unique aspects of tree form and function remain unclear. Here, by considering 18 functional traits, encompassing leaf, seed, bark, wood, crown, and root characteristics, we quantify the multidimensional relationships in tree trait expression. We find that nearly half of trait variation is captured by two axes: one reflecting leaf economics, the other reflecting tree size and competition for light. Yet these orthogonal axes reveal strong environmental convergence, exhibiting correlated responses to temperature, moisture, and elevation. By subsequently exploring multidimensional trait relationships, we show that the full dimensionality of trait space is captured by eight distinct clusters, each reflecting a unique aspect of tree form and function. Collectively, this work identifies a core set of traits needed to quantify global patterns in functional biodiversity, and it contributes to our fundamental understanding of the functioning of forests worldwide.Environmental Biolog
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
Mapping density, diversity and species-richness of the Amazon tree flora
Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution
Consistent patterns of common species across tropical tree communities
Trees structure the Earth’s most biodiverse ecosystem, tropical forests. The vast number of tree species presents a formidable challenge to understanding these forests, including their response to environmental change, as very little is known about most tropical tree species. A focus on the common species may circumvent this challenge. Here we investigate abundance patterns of common tree species using inventory data on 1,003,805 trees with trunk diameters of at least 10 cm across 1,568 locations1,2,3,4,5,6 in closed-canopy, structurally intact old-growth tropical forests in Africa, Amazonia and Southeast Asia. We estimate that 2.2%, 2.2% and 2.3% of species comprise 50% of the tropical trees in these regions, respectively. Extrapolating across all closed-canopy tropical forests, we estimate that just 1,053 species comprise half of Earth’s 800 billion tropical trees with trunk diameters of at least 10 cm. Despite differing biogeographic, climatic and anthropogenic histories7, we find notably consistent patterns of common species and species abundance distributions across the continents. This suggests that fundamental mechanisms of tree community assembly may apply to all tropical forests. Resampling analyses show that the most common species are likely to belong to a manageable list of known species, enabling targeted efforts to understand their ecology. Although they do not detract from the importance of rare species, our results open new opportunities to understand the world’s most diverse forests, including modelling their response to environmental change, by focusing on the common species that constitute the majority of their trees
Tick Gené’s organ engagement in lipid metabolism revealed by a combined transcriptomic and proteomic approach
Lipids play key roles in arthropod metabolism. In ticks, these biomolecules are transported from fat body to other organs, such as ovary and Gené’s organ. Gené’s organ, an apparatus found exclusively in female ticks, secretes a protective wax coat onto the egg surface, increasing egg viability in the environment due to waterproof, cohesive, and antimicrobial properties. In this work, a combined transcriptomic and proteomic approach shows that Gené’s organ not solely secrets compounds taken up from the hemolymph, but is actively engaged in synthesis, modification, and oxidation of lipids. Gené’s organ was analyzed at two distinct stages: 1) when ticks detach from host by the end of hematophagous phase, and 2) during egg-laying. Data show that Gené’s organ undergoes a maturation process before the onset of oviposition, in preparation for its role during egg-laying. Because it deals with a wax-secreting organ, the study focused on lipid metabolism, examining a full machinery to synthesize, modify, and oxidize fatty acids. Proteins involved in sterol modification, transport, and degradation were also addressed. In addition to highlighting Gené’s organ importance in tick reproductive physiology, the results reveal proteins and pathways crucial to egg wax secretion, and consequently, egg development in the environment. Tools targeting these molecules and pathways would impair egg viability in the environment, and therefore have the potential to be developed into novel tick control methods.Fil: Amaral Xavier, Marina. Universidade Federal do Rio Grande do Sul; BrasilFil: Tirloni, Lucas. National Institute of Allergy and Infectious Disease; Estados UnidosFil: Pinto, Antonio F.M.. The Scripps Research Institute; Estados Unidos. Salk Institute for Biological Studies; Estados UnidosFil: Diedrich, Jolene K.. The Scripps Research Institute; Estados UnidosFil: Yates, John R.. The Scripps Research Institute; Estados UnidosFil: Gonzales, Sergio. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Farber, Marisa Diana. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: da Silva Vaz, Itabajara. Universidade Federal do Rio Grande do Sul; BrasilFil: Termignoni, Carlos. Universidade Federal do Rio Grande do Sul; Brasi
- …