113 research outputs found

    Influence of strains and environmental cultivation conditions on the bioconversion of ergosterol and vitamin D 2 in the sun mushroom

    Get PDF
    The fungus Agaricus subrufescens is grown commercially in China, the USA, Brazil, Taiwan and Japan, among others. However, each country adopts a cultivation system that significantly influences the agronomical parameters and chemical composition of the harvested mushrooms. In this study, the influence of the cultivation process on the content of ergosterol and vitamin D2 was evaluated. RESULTS: Four commercial strains of A. subrufescens (ABL 04/49, ABL CS7, ABL 18/01 and ABL 19/01) and two environmental cultivation conditions (in the field and a controlled chamber with the absence of sunlight) were used. Infield cultivation, ABL CS7 and ABL 19/01 strains presented better agronomic parameters, whereas in a protected environment ABL 19/01, ABL 04/49 and ABL 18/01 demonstrated better performance, respectively. The highest biological efficiency value (64%) was provided by ABL 19/01 strain in a controlled environment. CONCLUSION: The highest content in ergosterol (990 mg kg−1) and vitamin D2 (36.8 mg kg−1) were observed in mushrooms obtained in the field from strain ABL 04/49, which presents reasonable agronomic parameters for cultivation.This research was funded by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP No. 2017/22501-2 for CVS, 2019/12605-0 for DMMS and 2018/21492-2 for DCZ, 19/00419-8 for WGVJ). The authors are grateful to the Foundation for Science and Technology (FCT, Portugal) for financial support through national funds FCT/MCTES to CIMO (UIDB/00690/2020); national funding by FCT, PI, through the institutional scientific employment program contracts for A Fernandes and L Barros. This work is funded by the European Structural and Investment Funds (FEEI) through the Regional Operational Program North 2020, within the scope of Project Mobilizador ValorNatural®.info:eu-repo/semantics/publishedVersio

    Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

    Get PDF
    Atmospheric parameters, such as pressure (P), temperature (T) and density, affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ~10% seasonal modulation and ~2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of pressure and density. The former affects the longitudinal development of air showers while the latter influences the Moliere radius and hence the lateral distribution of the shower particles. The model is validated with full simulations of extensive air showers using atmospheric profiles measured at the site of the Pierre Auger Observatory.Comment: 24 pages, 9 figures, accepted for publication in Astroparticle Physic

    The Fluorescence Detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detector. Finally, we evaluate the detector performance and precision of shower reconstructions.Comment: 53 pages. Submitted to Nuclear Instruments and Methods in Physics Research Section

    The exposure of the hybrid detector of the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The "hybrid" detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
    corecore