9 research outputs found

    Phenotypic Switching of Nonpeptidergic Cutaneous Sensory Neurons following Peripheral Nerve Injury

    Get PDF
    In adult mammals, the phenotype of half of all pain-sensing (nociceptive) sensory neurons is tonically modulated by growth factors in the glial cell line-derived neurotrophic factor (GDNF) family that includes GDNF, artemin (ARTN) and neurturin (NRTN). Each family member binds a distinct GFRα family co-receptor, such that GDNF, NRTN and ARTN bind GFRα1, -α2, and -α3, respectively. Previous studies revealed transcriptional regulation of all three receptors in following axotomy, possibly in response to changes in growth factor availability. Here, we examined changes in the expression of GFRα1-3 in response to injury in vivo and in vitro. We found that after dissociation of adult sensory ganglia, up to 27% of neurons die within 4 days (d) in culture and this can be prevented by nerve growth factor (NGF), GDNF and ARTN, but not NRTN. Moreover, up-regulation of ATF3 (a marker of neuronal injury) in vitro could be prevented by NGF and ARTN, but not by GDNF or NRTN. The lack of NRTN efficacy was correlated with rapid and near-complete loss of GFRα2 immunoreactivity. By retrogradely-labeling cutaneous afferents in vivo prior to nerve cut, we demonstrated that GFRα2-positive neurons switch phenotype following injury and begin to express GFRα3 as well as the capsaicin receptor, transient receptor potential vanilloid 1(TRPV1), an important transducer of noxious stimuli. This switch was correlated with down-regulation of Runt-related transcription factor 1 (Runx1), a transcription factor that controls expression of GFRα2 and TRPV1 during development. These studies show that NRTN-responsive neurons are unique with respect to their plasticity and response to injury, and suggest that Runx1 plays an ongoing modulatory role in the adult

    Nicotine activates the chemosensory cation channel TRPA1

    Get PDF
    8 pages, 7 figures.-- Supporting information available at: http://www.nature.com/neuro/journal/vaop/ncurrent/suppinfo/nn.2379_S1.htmlArticle in press.Topical application of nicotine, as used in nicotine replacement therapies, causes irritation of the mucosa and skin. This reaction has been attributed to activation of nicotinic acetylcholine receptors (nAChRs) in chemosensory neurons. In contrast with this view, we found that the chemosensory cation channel transient receptor potential A1 (TRPA1) is crucially involved in nicotine-induced irritation. We found that micromolar concentrations of nicotine activated heterologously expressed mouse and human TRPA1. Nicotine acted in a membrane-delimited manner, stabilizing the open state(s) and destabilizing the closed state(s) of the channel. In the presence of the general nAChR blocker hexamethonium, nociceptive neurons showed nicotine-induced responses that were strongly reduced in TRPA1-deficient mice. Finally, TRPA1 mediated the mouse airway constriction reflex to nasal instillation of nicotine. The identification of TRPA1 as a nicotine target suggests that existing models of nicotine-induced irritation should be revised and may facilitate the development of smoking cessation therapies with less adverse effects.K.T. and J.A.J.V. were supported by a postdoctoral mandate from KU Leuven and are currently postdoctoral fellows of the Research Foundation–Flanders (Fonds voor Wetenschappelijk Onderzoek, FWO). M.G. and W.E. are doctoral FWO fellows. V.M.M was supported by Spanish CONSOLIDER-INGENIO 2010 CSD2007-00023. This work was supported by grants from Inter-university Attraction Poles Programme (Belgian Science Policy, P6/28), FWO (G.0172.03 and G.0565.07), the Research Council of the KU Leuven (GOA 2004/07) and the Flemish Government (Excellentiefinanciering, EF/95/010).Peer reviewe

    The TRPA1 Channel in Inflammatory and Neuropathic Pain and Migraine

    No full text
    corecore