9 research outputs found
Peripheral Neural Activity Recording and Stimulation System
This paper presents a portable, embedded, microcontroller-based system for bidirectional communication (recording and stimulation) between an electrode, implanted in the peripheral nervous system, and a host computer. The device is able to record and digitize spontaneous and/or evoked neural activities and store them in data files on a PC. In addition, the system has the capability of providing electrical stimulation of peripheral nerves, injecting biphasic current pulses with programmable duration, intensity, and frequency. The recording system provides a highly selective band-pass filter from 800 Hz to 3 kHz, with a gain of 56 dB. The amplification range can be further extended to 96 dB with a variable gain amplifier. The proposed acquisition/stimulation circuitry has been successfully tested through in vivo measurements, implanting a tf-LIFE electrode in the sciatic nerve of a rat. Once implanted, the device showed an input referred noise of 0.83 μVrms, was capable of recording signals below 10 μV, and generated muscle responses to injected stimuli. The results demonstrate the capability of processing and transmitting neural signals with very low distortion and with a power consumption lower than 1 W. A graphic, user-friendly interface has been developed to facilitate the configuration of the entire system, providing the possibility to activate stimulation and monitor recordings in real time
Independent Component Decomposition of Human Somatosensory Evoked Potentials Recorded by Micro- Electrocorticography
High-density surface microelectrodes for electrocorticography (ECoG) have become more common in recent years for recording electrical signals from the cortex. With an acceptable invasiveness/ signal fidelity trade-off and high spatial resolution, micro-ECoG is a promising tool to resolve fine task-related spatial-temporal dynamics. However, volume conduction -not a negligible phenomenon-is likely to frustrate efforts to obtain reliable and resolved signals from a sub-millimeter electrode array. To address this issue, we performed an independent component analysis (ICA) on micro-ECoG recordings of somatosensory-evoked potentials (SEPs) elicited by median nerve stimulation in three human patients undergoing brain surgery for tumor resection. Using well-described cortical responses in SEPs, we were able to validate our results showing that the array could segregate different functional units possessing unique, highly localized spatial distributions. The representation of signals through the root-mean-square (rms) maps and the signal-to-noise ratio (SNR) analysis emphasizes the advantages of adopting a source analysis approach on micro-ECoG recordings in order to obtain a clear picture of cortical activity. The implications are twofold: while on one side ICA may be used as a spatial-temporal filter extracting micro-signal components relevant to tasks for brain-computer interface (BCI) applications, it could also be adopted to accurately identify the sites of nonfunctional regions for clinical purposes
Ultra-flexible and brain-conformable micro-electrocorticography device with low impedance PEDOT-carbon nanotube coated microelectrodes
Electrocorticography, thanks to its low degree of invasiveness, has received in recent years an increasing attention for chronic brain-machine interface applications. To be up to the task, electrocorticography electrode arrays can benefit from several improvements. Better recording abilities can be obtained through smaller, low impedance and high density electrodes, while conformability can provide superior adhesion to the cortex surface and lower biological impact. In this work we present an ultra-flexible and brain-conformable polyimide-based micro-ECoG array with low-impedance poly(3,4-ethylenedioxythiophene) (PEDOT)-carbon nanotube coated microelectrodes. A first in vivo validation of our device is performed on rat somatosensory cortex. © 2013 IEEE
A Compact and Autoclavable System for Acute Extracellular Neural Recording and Brain Pressure Monitoring for Humans
One of the most difficult tasks for the surgeon during the removal of low-grade gliomas is to identify as precisely as possible the borders between functional and non-functional brain tissue with the aim of obtaining the maximal possible resection which allows to the patient the longer survival. For this purpose, systems for acute extracellular recordings of single neuron and multi-unit activity are considered promising. Here we describe a system to be used with 16 microelectrodes arrays that consists of an autoclavable headstage, a built-in inserter for precise electrode positioning and a system that measures and controls the pressure exerted by the headstage on the brain with a twofold purpose: to increase recording stability and to avoid disturbance of local perfusion which would cause a degradation of the quality of the recording and, eventually, local ischemia. With respect to devices where only electrodes are autoclavable, our design permits the reduction of noise arising from long cable connections preserving at the same time the flexibility and avoiding long-lasting gas sterilization procedures. Finally, size is much smaller and set up time much shorter compared to commercial systems currently in use in surgery rooms, making it easy to consider our system very useful for intra-operatory mapping operations