636 research outputs found

    A Simple PCR Method for Rapid Genotype Analysis of the TH-MYCN Transgenic Mouse

    Get PDF
    BACKGROUND: The TH-MYCN transgenic mouse is the most widely used murine model of human neuroblastoma, in which a human MYCN oncogene is targeted to neuroectodermal cells of developing mice under the influence of the rat tyrosine hydroxylase promoter. So far, homozygous transgenic mice have been identified by either Southern blot or quantitative real-time PCR. PRINCIPAL FINDINGS: To establish a simple and reliable genotyping method by conventional PCR, we confirmed the integration of the transgene in the TH-MYCN transgenic mouse by Southern blot and inverse PCR analyses. Our results showed that either five or six copies were found to be inserted in a head-to-tail tandem configuration at a single locus. The MYCN transgene/host DNA junction was sequenced and the integration site was identified at chromosome 18qE4. Finally, we succeeded in designing rapid, simple and reliable genotyping method by common PCR using primers flanking the integrated TH-MYCN transgene. CONCLUSION: We established a simple and reliable genotyping PCR method for determining the integration site of the TH-MYCN transgene that enables all possible genotypes to be distinguished within several hours. TH-MYCN mice are excellent model for human neuroblastoma study, thus our results will largely be useful for facilitating the pace of neuroblastoma study, including in the study of the tumourigenic process, and in the development of therapies to treat patients suffering from neuroblastoma

    MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian))

    Get PDF
    Review on MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian)), with data on DNA, on the protein encoded, and where the gene is implicated

    A novel 1p36.2 located gene, APITD1, with tumour-suppressive properties and a putative p53-binding domain, shows low expression in neuroblastoma tumours

    Get PDF
    Neuroblastoma is characterised by a lack of TP53 mutations and no other tumour suppressor gene consistently inactivated has yet been identified in this childhood cancer form. Characterisation of a new gene, denoted APITD1, in the neuroblastoma tumour suppressor candidate region in chromosome 1p36.22 reveals that APITD1 contains a predicted TFIID-31 domain, representing the TATA box-binding protein-associated factor, TAFII31, which is required for p53-mediated transcription activation. Two different transcripts of this gene were shown to be ubiquitously expressed, one of them with an elevated expression in foetal tissues. Primary neuroblastoma tumours of all different stages showed either very weak or no measurable APITD1 expression, contrary to the level of expression observed in neuroblastoma cell lines. A reduced pattern of expression was also observed in a set of various tumour types. APITD1 was functionally tested by adding APITD1 mRNA to neuroblastoma cells, leading to the cell growth to be reduced up to 90% compared to control cells, suggesting APITD1 to have a role in a cell death pathway. Furthermore, we determined the genomic organisation of APITD1. Automated genomic DNA sequencing of the coding region of the gene as well as the promoter sequence in 44 neuroblastoma tumours did not reveal any loss-of-function mutations, indicating that mutations in APITD1 is not a common abnormality of neuroblastoma tumours. We suggest that low expression of this gene might interfere with the ability for apoptosis through the p53 pathway

    Impact of N-myc amplification on median survival in children with neuroblastoma

    Get PDF
    Background: Neuroblastoma is the most common extracranial malignant solid tumor in children under 5 years, and it is characterized by wide clinical and biological heterogeneity. N-myc oncogene amplification is considered to be one of the most important prognostic factors used to evaluate survival in these patients. Objectives: The aim of our study was to determine amplification of the N-myc oncogene using real-time quantitative polymerase chain reaction (PCR) and to show the influence of N-myc amplified tumors on the overall survival rate. Patients and Methods: This study is an analytical historical cohort study of forty children with neuroblastoma admitted to the Shafa Hospital, Iran from 1999 to 2010. Paraffined blocks of tumoral tissue were analyzed for N-myc amplification by a PCR. The degree of N-myc amplification was derived from the ratio of the N-myc oncogene and the single copy reference gene, NAGK. In the statistical analysis, a Kaplan-Meier survival analysis was used. Results: We found a variable degree of N-myc amplification, from 3 to 2 200, in 32 of the 40 neuroblastomas (80%). NMYC amplification was seen more frequently in patients older than 2.5 years (71.9%), stage 4 (65.6%) and female (53.1%). Median survival time in the males was significantly longer than in the females (P = 0.03). The overall median survival for N-myc amplified tumor patients was 20 months, and 30 months for the non amplified tumors. Conclusions: The N-myc amplified tumors may increase the probability of more aggressive behavior and rapid tumor progression, especially in advanced stages of neuroblastoma. This study confirmed the importance of obtaining correct measurements of oncogene amplification in the early evaluation of neuroblastomas in order to target more aggressive therapies in patients with a higher risk of cancer progression

    Gain of chromosome arm 17q is associated with unfavourable prognosis in neuroblastoma, but does not involve mutations in the somatostatin receptor 2 (SSTR2) gene at 17q24

    Get PDF
    Deletion of chromosome arm 1p and amplification of the MYCN oncogene are well-recognized genetic alterations in neuroblastoma cells. Recently, another alteration has been reported; gain of the distal part of chromosome arm 17q. In this study 48 neuroblastoma tumours were successfully analysed for 17q status in relation to known genetic alterations. Chromosome 17 status was detected by fluorescence in situ hybridization (FISH). Thirty-one of the 48 neuroblastomas (65%) showed 17q gain, and this was significantly associated with poor prognosis. As previously reported, 17q gain was significantly associated with metastatic stage 4 neuroblastoma and more frequently detected than both deletion of chromosome arm 1p and MYCN amplification in tumours of all stages. 17q gain also showed a strong correlation to survival probability (P = 0.0009). However, the most significant correlation between 17q gain and survival probability was observed in children with low-stage tumours (stage 1, 2, 3 and 4S), with a survival probability of 100% at 5 years from diagnosis for children with tumours showing no 17q gain compared to 52.5% for those showing 17q gain (P = 0.0021). This suggests that 17q gain as a prognostic factor plays a more crucial role in low-stage tumours. Expression of the somatostatin receptor 2 (SSTR2), localized in chromosome region 17q24, has in previous studies been shown to be positively related to survival in neuroblastoma. A point mutation in the SSTR2 gene has earlier been reported in a human small-cell lung cancer. In this study, mutation screening of the SSTR2 gene in 43 neuroblastoma tumours was carried out with polymerase chain reaction-based single-stranded conformation polymorphism/heteroduplex (SSCP/HD) and DNA sequencing, and none of the tumours showed any aberrations in the SSTR2 gene. These data suggest that mutations in the SSTR2 gene are uncommon in neuroblastoma tumours and do not correlate with either the 17q gain often seen or the reason some tumours do not express SSTR2 receptors. Overall, this study indicates that gain of chromosome arm 17q is the most frequently occurring genetic alteration, and that it is associated with established prognostic factors. © 1999 Cancer Research Campaig

    Unchanged incidence and increased survival in children with neuroblastoma in Denmark 1981–2000: a population-based study

    Get PDF
    Treatment results for neuroblastoma in Denmark have been poorer than in other Nordic countries, so we investigated whether a change in incidence, stage distribution and survival had occurred between 1981 and 2000. Clinical data were retrieved from the medical charts of 160 children <15 years of age with extra-cranial neuroblastoma (n=139) or ganglioneuroblastoma (n=21) diagnosed in Denmark between 1981 and 2000. The minimal follow-up time was 52 months. Statistical analyses were performed in STATA. The incidence was 8.55 per million children below 15 years of age (world standard 9.6) and 42.6 per million children below 12 months of age, and it has remained unchanged since 1970. The median age at diagnosis was 27 months. In all, 32% of the children were aged below 12 months at diagnosis, 53% had metastatic disease and in 12% the diagnosis was made incidentally. Prognostic factors such as age, stage and site of primary tumour were the same as in other studies and did not change. During the study period, the mortality rate decreased steadily, and the 5-year survival rate increased from 38% in 1981–1985 to 59% in 1996–2000, corresponding to the level found in other Western countries. Increased survival was also seen in children with metastatic disease. Participation in international studies, better supportive care and possibly postoperative autologous stem cell transplantation may have contributed to the increased survival

    MYCN gene amplification is a powerful prognostic factor even in infantile neuroblastoma detected by mass screening

    Get PDF
    MYCN is the most powerful prognostic factor in cases of older children. However, how MYCN is related to the prognosis of infantile cases is not clear. A mass screening program was carried out by measuring urinary catecholamine metabolites (VMA and HVA) from 6-month-old infants. Of 2084 cases detected by the screening program, MYCN amplification (MNA) was examined by Southern blot analyses in 1533 cases from 1987 to 2000. Of the 1533 cases examined, 1500 (97.8%) showed no MNA, 20 cases (1.3%) showed MNA from three to nine copies, and 13 (0.8%) cases showed more than 10 copies. The 4-year overall survival rates of these three groups (99, 89 and 53%, respectively) were significantly different (P<0.001), indicating that MYCN copy number correlates with the prognosis. Cases with MNA more than 10 copies were more advanced than those without amplification (stage III, IV vs I, II, IVs; P<0.001). Patients with MNA more than 10 copies had significantly higher serum levels of neuron-specific-enolase (NSE) and ferritin than non-amplified patients (P=0.049, P=0.025, respectively). MYCN amplification was strongly correlated with a poor prognosis in infantile neuroblastoma cases. Therefore, for the selection of appropriate treatment, an accurate determination of MNA is indispensable

    Specific gene expression profiles and chromosomal abnormalities are associated with infant disseminated neuroblastoma

    Get PDF
    Background: Neuroblastoma (NB) tumours have the highest incidence of spontaneous remission, especially among the stage 4s NB subgroup affecting infants. Clinical distinction of stage 4s from lethal stage 4 can be difficult, but critical for therapeutic decisions. The aim of this study was to investigate chromosomal alterations and differential gene expression amongst infant disseminated NB subgroups. Methods: Thirty-five NB tumours from patients diagnosed at < 18 months (25 stage 4 and 10 stage 4s), were evaluated by allelic and gene expression analyses. Results: All stage 4s patients underwent spontaneous remission, only 48% stage 4 patients survived despite combined modality therapy. Stage 4 tumours were 90% near-diploid/tetraploid, 44% MYCN amplified, 77% had 1p LOH (50% 1p36), 23% 11q and/or 14q LOH (27%) and 47% had 17q gain. Stage 4s were 90% near-triploid, none MYCN amplified and LOH was restricted to 11q. Initial comparison analyses between stage 4s and 4 < 12 months tumours revealed distinct gene expression profiles. A significant portion of genes mapped to chromosome 1 (P < 0.0001), 90% with higher expression in stage 4s, and chromosome 11 (P = 0.0054), 91% with higher expression in stage 4. Less definite expression profiles were observed between stage 4s and 4 < 18m, yet, association with chromosomes 1 (P < 0.0001) and 11 (P = 0.005) was maintained. Distinct gene expression profiles but no significant association with specific chromosomal region localization was observed between stage 4s and stage 4 < 18 months without MYCN amplification. Conclusion: Specific chromosomal aberrations are associated with distinct gene expression profiles which characterize spontaneously regressing or aggressive infant NB, providing the biological basis for the distinct clinical behaviour

    Phenotype Restricted Genome-Wide Association Study Using a Gene-Centric Approach Identifies Three Low-Risk Neuroblastoma Susceptibility Loci

    Get PDF
    Neuroblastoma is a malignant neoplasm of the developing sympathetic nervous system that is notable for its phenotypic diversity. High-risk patients typically have widely disseminated disease at diagnosis and a poor survival probability, but low-risk patients frequently have localized tumors that are almost always cured with little or no chemotherapy. Our genome-wide association study (GWAS) has identified common variants within FLJ22536, BARD1, and LMO1 as significantly associated with neuroblastoma and more robustly associated with high-risk disease. Here we show that a GWAS focused on low-risk cases identified SNPs within DUSP12 at 1q23.3 (P = 2.07×10−6), DDX4 and IL31RA both at 5q11.2 (P = 2.94×10−6 and 6.54×10−7 respectively), and HSD17B12 at 11p11.2 (P = 4.20×10−7) as being associated with the less aggressive form of the disease. These data demonstrate the importance of robust phenotypic data in GWAS analyses and identify additional susceptibility variants for neuroblastoma
    corecore