25 research outputs found

    Laser-induced interference, focusing, and diffraction of rescattering molecular photoelectrons

    Get PDF
    We solve the time-dependent Schrodinger equation in three dimensions for H-2(+) in a one-cycle laser pulse of moderate intensity. We consider fixed nuclear positions and Coulomb electron-nuclear interaction potentials. We analyze the field-induced electron interference and diffraction patterns. To extract the ionization dynamics we subtract the excitations to low-lying bound states explicitly. We follow the time evolution of a well-defined wave packet that is formed near the first peak of the laser field. We observe the fragmentation of the wave packet due to molecular focusing. We show how to retrieve a diffraction molecular image by taking the ratio of the momentum distributions in the two lateral directions. The positions of the diffraction peaks are well described by the classical double slit diffraction rule

    Attosecond control of electrons emitted from a nanoscale metal tip

    Full text link
    Attosecond science is based on steering of electrons with the electric field of well-controlled femtosecond laser pulses. It has led to, for example, the generation of XUV light pulses with a duration in the sub-100-attosecond regime, to the measurement of intra-molecular dynamics by diffraction of an electron taken from the molecule under scrutiny, and to novel ultrafast electron holography. All these effects have been observed with atoms or molecules in the gas phase. Although predicted to occur, a strong light-phase sensitivity of electrons liberated by few-cycle laser pulses from solids has hitherto been elusive. Here we show a carrier-envelope (C-E) phase-dependent current modulation of up to 100% recorded in spectra of electrons laser-emitted from a nanometric tungsten tip. Controlled by the C-E phase, electrons originate from either one or two sub-500as long instances within the 6-fs laser pulse, leading to the presence or absence of spectral interference. We also show that coherent elastic re-scattering of liberated electrons takes place at the metal surface. Due to field enhancement at the tip, a simple laser oscillator suffices to reach the required peak electric field strengths, allowing attosecond science experiments to be performed at the 100-Megahertz repetition rate level and rendering complex amplified laser systems dispensable. Practically, this work represents a simple, exquisitely sensitive C-E phase sensor device, which can be shrunk in volume down to ~ 1cm3. The results indicate that the above-mentioned novel attosecond science techniques developed with and for atoms and molecules can also be employed with solids. In particular, we foresee sub-femtosecond (sub-) nanometre probing of (collective) electron dynamics, such as plasmon polaritons, in solid-state systems ranging in size from mesoscopic solids via clusters to single protruding atoms.Comment: Final manuscript version submitted to Natur

    RNA localization in neurite morphogenesis and synaptic regulation: current evidence and novel approaches

    Get PDF
    It is now generally accepted that RNA localization in the central nervous system conveys important roles both during development and in the adult brain. Of special interest is protein synthesis located at the synapse, as this potentially confers selective synaptic modification and has been implicated in the establishment of memories. However, the underlying molecular events are largely unknown. In this review, we will first discuss novel findings that highlight the role of RNA localization in neurons. We will focus on the role of RNA localization in neurotrophin signaling, axon outgrowth, dendrite and dendritic spine morphogenesis as well as in synaptic plasticity. Second, we will briefly present recent work on the role of microRNAs in translational control in dendrites and its implications for learning and memory. Finally, we discuss recent approaches to visualize RNAs in living cells and their employment for studying RNA trafficking in neurons

    A Simple Method for Differentiating Complicated Parapneumonic Effusion/Empyema from Parapneumonic Effusion Using the Split Pleura Sign and the Amount of Pleural Effusion on Thoracic CT

    No full text
    Pleural separation, the "split pleura" sign, has been reported in patients with empyema. However, the diagnostic yield of the split pleura sign for complicated parapneumonic effusion (CPPE)/empyema and its utility for differentiating CPPE/empyema from parapneumonic effusion (PPE) remains unclear. This differentiation is important because CPPE/empyema patients need thoracic drainage. In this regard, the aim of this study was to develop a simple method to distinguish CPPE/empyema from PPE using computed tomography (CT) focusing on the split pleura sign, fluid attenuation values (HU: Hounsfield units), and amount of fluid collection measured on thoracic CT prior to diagnostic thoracentesis.A total of 83 consecutive patients who underwent chest CT and were diagnosed with CPPE (n=18)/empyema (n=18) or PPE (n=47) based on the diagnostic thoracentesis were retrospectively analyzed.On univariate analysis, the split pleura sign (odds ratio (OR), 12.1; p<0.001), total amount of pleural effusion (≥30 mm) (OR, 6.13; p<0.001), HU value≥10 (OR, 5.94; p=0.001), and the presence of septum (OR, 6.43; p=0.018), atelectasis (OR, 6.83; p=0.002), or air (OR, 9.90; p=0.002) in pleural fluid were significantly higher in the CPPE/empyema group than in the PPE group. On multivariate analysis, only the split pleura sign (hazard ratio (HR), 6.70; 95% confidence interval (CI), 1.91-23.5; p=0.003) and total amount of pleural effusion (≥30 mm) on thoracic CT (HR, 7.48; 95%CI, 1.76-31.8; p=0.006) were risk factors for empyema. Sensitivity, specificity, positive predictive value, and negative predictive value of the presence of both split pleura sign and total amount of pleural effusion (≥30 mm) on thoracic CT for CPPE/empyema were 79.4%, 80.9%, 75%, and 84.4%, respectively, with an area under the curve of 0.801 on receiver operating characteristic curve analysis.This study showed a high diagnostic yield of the split pleura sign and total amount of pleural fluid (≥30 mm) on thoracic CT that is useful and simple for discriminating between CPPE/empyema and PPE prior to diagnostic thoracentesis

    Real-time observation of valence electron motion

    No full text
    The superposition of quantum states drives motion on the atomic and subatomic scales, with the energy spacing of the states dictating the speed of the motion. In the case of electrons residing in the outer (valence) shells of atoms and molecules which are separated by electronvolt energies, this means that valence electron motion occurs on a subfemtosecond to few-femtosecond timescale (1 fs = 10(-15) s). In the absence of complete measurements, the motion can be characterized in terms of a complex quantity, the density matrix. Here we report an attosecond pump-probe measurement of the density matrix of valence electrons in atomic krypton ions. We generate the ions with a controlled few-cycle laser field and then probe them through the spectrally resolved absorption of an attosecond extreme-ultraviolet pulse, which allows us to observe in real time the subfemtosecond motion of valence electrons over a multifemtosecond time span. We are able to completely characterize the quantum mechanical electron motion and determine its degree of coherence in the specimen of the ensemble. Although the present study uses a simple, prototypical open system, attosecond transient absorption spectroscopy should be applicable to molecules and solid-state materials to reveal the elementary electron motions that control physical, chemical and biological properties and processes
    corecore