28 research outputs found

    Ancient horizontal transfers of retrotransposons between birds and ancestors of human pathogenic nematodes

    Get PDF
    Parasite host switches may trigger disease emergence, but prehistoric host ranges are often unknowable. Lymphatic filariasis and loiasis are major human diseases caused by the insect-borne filarial nematodes Brugia, Wuchereria and Loa. Here we show that the genomes of these nematodes and seven tropical bird lineages exclusively share a novel retrotransposon, AviRTE, resulting from horizontal transfer (HT). AviRTE subfamilies exhibit 83–99% nucleotide identity between genomes, and their phylogenetic distribution, paleobiogeography and invasion times suggest that HTs involved filarial nematodes. The HTs between bird and nematode genomes took place in two pantropical waves, >25–22 million years ago (Myr ago) involving the Brugia/Wuchereria lineage and >20–17 Myr ago involving the Loa lineage. Contrary to the expectation from the mammal-dominated host range of filarial nematodes, we hypothesize that these major human pathogens may have independently evolved from bird endoparasites that formerly infected the global breadth of avian biodiversity

    Genome sequencing reveals coinfection by multiple chikungunya virus genotypes in a recent outbreak in Brazil

    Get PDF
    Chikungunya virus (CHIKV) is an RNA virus from the Togaviridae family transmitted by mosquitoes in both sylvatic and urban cycles. In humans, CHIKV infection leads to a febrile illness, denominated Chikungunya fever (CHIKF), commonly associated with more intense and debilitating outcomes. CHIKV arrived in Brazil in 2014 through two independent introductions: the Asian/Caribbean genotype entered through the North region and the African ECSA genotype was imported through the Northeast region. Following their initial introduction, both genotypes established their urban cycle among large naive human populations causing several outbreaks in the Americas. Here, we sequenced CHIKV genomes from a recent outbreak in the Northeast region of Brazil, employing an in-house developed Next-Generation Sequencing (NGS) protocol capable of directly detecting multiple known CHIKV genotypes from clinical positive samples. Our results demonstrate that both Asian/Caribbean and ECSA genotypes expanded their ranges, reaching cocirculation in the Northeast region of Brazil. In addition, our NGS data supports the findings of simultaneous infection by these two genotypes, suggesting that coinfection might be more common than previously thought in highly endemic areas. Future efforts to understand CHIKV epidemiology should thus take into consideration the possibility of coinfection by different genotypes in the human population

    Comparative Genomics ofAcinetobacter baumanniiClinical Strains From Brazil Reveals Polyclonal Dissemination and Selective Exchange of Mobile Genetic Elements Associated With Resistance Genes

    Get PDF
    Acinetobacter baumannii is an opportunistic bacterial pathogen infecting immunocompromised patients and has gained attention worldwide due to its increased antimicrobial resistance. Here, we report a comparative whole-genome sequencing and analysis coupled with an assessment of antibiotic resistance of 46 Acinetobacter strains (45 A. baumannii plus one Acinetobacter nosocomialis) originated from five hospitals from the city of Recife, Brazil, between 2010 and 2014. An average of 3,809 genes were identified per genome, although only 2,006 genes were single copy orthologs or core genes conserved across all sequenced strains, with an average of 42 new genes found per strain. We evaluated genetic distance through a phylogenetic analysis and MLST as well as the presence of antibiotic resistance genes, virulence markers and mobile genetic elements (MGE). The phylogenetic analysis recovered distinct monophyletic A. baumannii groups corresponding to five known (ST1, ST15, ST25, ST79, and ST113) and one novel ST (ST881, related to ST1). A large number of ST specific genes were found, with the ST79 strains having the largest number of genes in common that were missing from the other STs. Multiple genes associated with resistance to β-lactams, aminoglycosides and other antibiotics were found. Some of those were clearly mapped to defined MGEs and an analysis of those revealed known elements as well as a novel Tn7-Tn3 transposon with a clear ST specific distribution. An association of selected resistance/virulence markers with specific STs was indeed observed, as well as the recent spread of the OXA-253 carbapenemase encoding gene. Virulence genes associated with the synthesis of the capsular antigens were noticeably more variable in the ST113 and ST79 strains. Indeed, several resistance and virulence genes were common to the ST79 and ST113 strains only, despite a greater genetic distance between them, suggesting common means of genetic exchange. Our comparative analysis reveals the spread of multiple STs and the genomic plasticity of A. baumannii from different hospitals in a single metropolitan area. It also highlights differences in the spread of resistance markers and other MGEs between the investigated STs, impacting on the monitoring and treatment of Acinetobacter in the ongoing and future outbreaks
    corecore