16,085 research outputs found
A queue with multiple stable regions
Proceedings of the UKPEW, 2009, p. 75-83The stable region of a queue consists of all values of the system parameters for the queue to be stable. A queue can have multiple stable regions, such that the probability law governing the system has different functional forms in different stable regions and hence the performance of the system cannot be captured only by the parameter values. We analyze a queue with multiple stable regions, and explain why such a queue is not amenable to current queueing theory.postprin
Monoamine oxidase A upregulated by chronic intermittent hypoxia activates indoleamine 2,3-dioxygenase and neurodegeneration
published_or_final_versio
Combined acoustic radiation force impulse, aminotransferase to platelet ratio index and Forns index assessment for hepatic fibrosis grading in hepatitis B
published_or_final_versio
Two diterpenes and three diterpene glucosides from Phlogacanthus curviflorus
Two new diterpene lactones, phlogacantholides B (1) and C (2), and three new diterpene lactone glucosides, phlogacanthosides A (3), B (4), and C (5), together with lupeol, beta-sitosterol, betulin, P-daucosterol, (+)syringaresinol, and (+)-syringaresinol-4-O-beta-D-glucopyranoside, were isolated from the roots of Phlogacanthus curviflorus. Their structures were elucidated by chemical and spectroscopic evidence. The structure, including the relative configuration of phlogacantholide B (1), was confirmed by X-ray crystallographic analysis of its diacetate (6)
Patient-reported outcomes measures and patient preferences for minimally invasive glaucoma surgical devices.
BackgroundMany therapeutic options are available to glaucoma patients. One recent therapeutic option is minimally invasive glaucoma surgical (MIGS) devices. It is unclear how patients view different treatments and which patient-reported outcomes would be most relevant in patients with mild to moderate glaucoma. We developed a questionnaire for patients eligible for MIGS devices and a patient preference study to examine the value patients place on certain outcomes associated with glaucoma and its therapies.ObjectivesTo summarize the progress to date.MethodsQuestionnaire development: We drafted the questionnaire items based on input from one physician and four patient focus groups, and a review of the literature. We tested item clarity with six cognitive interviews. These items were further refined. Patient preference study: We identified important benefit and risk outcomes qualitatively using semi-structured, one-on-one interviews with patients who were eligible for MIGS devices. We then prioritized these outcomes quantitatively using best-worst scaling methods.ResultsQuestionnaire testing: Three concepts were deemed relevant for the questionnaire: functional limitations, symptoms, and psychosocial factors. We will evaluate the reliability and validity of the 52-item draft questionnaire in an upcoming field test. Patient preference study: We identified 13 outcomes that participants perceived as important. Outcomes with the largest relative importance weights were "adequate IOP control" and "drive a car during the day."ConclusionsPatients have the potential to steer clinical research towards outcomes that are important to them. Incorporating patients' perspectives into the MIGS device development and evaluation process may expedite innovation and availability of these devices
The radial dimension of a supersonic jet expansion from conical nozzle
In a laser-cluster interaction experiment, the radial dimension of a supersonic gas jet is an important parameter for the characterization of interaction volume. It is noted that due to the lateral gas expansion, the diameter of a supersonic gas jet is larger than the idealized diameter of a gas jet from a conical nozzle. In this work the effect of the lateral expansion on the radial dimension of gas jet was investigated by simulations. Based on the simulation results, the diameter of gas jet l was compared in detail with the corresponding diameter l(T) in the idealized straight streamline model and the diameter l(H) at a half of maximum atom density of gas jet. The results reveal how the deviation of l from l(T) (l(H)) changes with respect to the opening angles of conical nozzles, the heights above the nozzle, the nozzle lengths and the gas backing pressures. It is found that the diameter of gas jet l is close to the idealized diameter l(T) and l(H) in the case where a long conical nozzle with a large opening angle is used under a low gas backing pressure. In this case, the effect of the lateral expansion is so weak that the edge of gas jet becomes sharp and the radial distribution of atom density in gas jet tends to be uniform. The results could be useful for the characterization of a supersonic gas jet. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).110Ysciescopu
Accurate prediction of heat of formation by combining Hartree-Fock/density functional theory calculation with linear regression correction approach
A linear regression correction (LRC) approach was developed to account for the electron correlation energy missing in Hartree-Fock (HF) calculation. This method was applied to evaluate the standard heats of formation of 180 small-sized to medium-sized organic molecules at 298.15 K. The descriptors in the LRC scheme are the number of lone-pair electrons, bonding electrons and inner layer electrons in molecules, and the number of unpaired electrons in ground state atoms. It is observed that the large systematic deviations for the calculated heat of formation are reduced drastically, in particular, for the HF results.published_or_final_versio
Casimir forces on a silicon micromechanical chip
Quantum fluctuations give rise to van der Waals and Casimir forces that
dominate the interaction between electrically neutral objects at sub-micron
separations. Under the trend of miniaturization, such quantum electrodynamical
effects are expected to play an important role in micro- and nano-mechanical
devices. Nevertheless, utilization of Casimir forces on the chip level remains
a major challenge because all experiments so far require an external object to
be manually positioned close to the mechanical element. Here, by integrating a
force-sensing micromechanical beam and an electrostatic actuator on a single
chip, we demonstrate the Casimir effect between two micromachined silicon
components on the same substrate. A high degree of parallelism between the two
near-planar interacting surfaces can be achieved because they are defined in a
single lithographic step. Apart from providing a compact platform for Casimir
force measurements, this scheme also opens the possibility of tailoring the
Casimir force using lithographically defined components of non-conventional
shapes
Spina bifida-predisposing heterozygous mutations in Planar Cell Polarity genes and Zic2 reduce bone mass in young mice
Fractures are a common comorbidity in children with the neural tube defect (NTD) spina bifida. Mutations in the Wnt/planar cell polarity (PCP) pathway contribute to NTDs in humans and mice, but whether this pathway independently determines bone mass is poorly understood. Here, we first confirmed that core Wnt/PCP components are expressed in osteoblasts and osteoclasts in vitro. In vivo, we performed detailed µCT comparisons of bone structure in tibiae from young male mice heterozygous for NTD-associated mutations versus WT littermates. PCP signalling disruption caused by Vangl2 (Vangl2Lp/+) or Celsr1 (Celsr1Crsh/+) mutations significantly reduced trabecular bone mass and distal tibial cortical thickness. NTD-associated mutations in non-PCP transcription factors were also investigated. Pax3 mutation (Pax3Sp2H/+) had minimal effects on bone mass. Zic2 mutation (Zic2Ku/+) significantly altered the position of the tibia/fibula junction and diminished cortical bone in the proximal tibia. Beyond these genes, we bioinformatically documented the known extent of shared genetic networks between NTDs and bone properties. 46 genes involved in neural tube closure are annotated with bone-related ontologies. These findings document shared genetic networks between spina bifida risk and bone structure, including PCP components and Zic2. Genetic variants which predispose to spina bifida may therefore independently diminish bone mass
Quantitative principles of cis-translational control by general mRNA sequence features in eukaryotes.
BackgroundGeneral translational cis-elements are present in the mRNAs of all genes and affect the recruitment, assembly, and progress of preinitiation complexes and the ribosome under many physiological states. These elements include mRNA folding, upstream open reading frames, specific nucleotides flanking the initiating AUG codon, protein coding sequence length, and codon usage. The quantitative contributions of these sequence features and how and why they coordinate to control translation rates are not well understood.ResultsHere, we show that these sequence features specify 42-81% of the variance in translation rates in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Arabidopsis thaliana, Mus musculus, and Homo sapiens. We establish that control by RNA secondary structure is chiefly mediated by highly folded 25-60 nucleotide segments within mRNA 5' regions, that changes in tri-nucleotide frequencies between highly and poorly translated 5' regions are correlated between all species, and that control by distinct biochemical processes is extensively correlated as is regulation by a single process acting in different parts of the same mRNA.ConclusionsOur work shows that general features control a much larger fraction of the variance in translation rates than previously realized. We provide a more detailed and accurate understanding of the aspects of RNA structure that directs translation in diverse eukaryotes. In addition, we note that the strongly correlated regulation between and within cis-control features will cause more even densities of translational complexes along each mRNA and therefore more efficient use of the translation machinery by the cell
- …
