15 research outputs found
Temporal Dynamics of European Bat Lyssavirus Type 1 and Survival of Myotis myotis Bats in Natural Colonies
Many emerging RNA viruses of public health concern have recently been detected in bats. However, the dynamics of these viruses in natural bat colonies is presently unknown. Consequently, prediction of the spread of these viruses and the establishment of appropriate control measures are hindered by a lack of information. To this aim, we collected epidemiological, virological and ecological data during a twelve-year longitudinal study in two colonies of insectivorous bats (Myotis myotis) located in Spain and infected by the most common bat lyssavirus found in Europe, the European bat lyssavirus subtype 1 (EBLV-1). This active survey demonstrates that cyclic lyssavirus infections occurred with periodic oscillations in the number of susceptible, immune and infected bats. Persistence of immunity for more than one year was detected in some individuals. These data were further used to feed models to analyze the temporal dynamics of EBLV-1 and the survival rate of bats. According to these models, the infection is characterized by a predicted low basic reproductive rate (R0 = 1.706) and a short infectious period (D = 5.1 days). In contrast to observations in most non-flying animals infected with rabies, the survival model shows no variation in mortality after EBLV-1 infection of M. myotis. These findings have considerable public health implications in terms of management of colonies where lyssavirus-positive bats have been recorded and confirm the potential risk of rabies transmission to humans. A greater understanding of the dynamics of lyssavirus in bat colonies also provides a model to study how bats contribute to the maintenance and transmission of other viruses of public health concern
Systemic virus distribution and host responses in brain and intestine of chickens infected with low pathogenic or high pathogenic avian influenza virus
<p>Abstract</p> <p>Background</p> <p>Avian influenza virus (AIV) is classified into two pathotypes, low pathogenic (LP) and high pathogenic (HP), based on virulence in chickens.</p> <p>Differences in pathogenicity between HPAIV and LPAIV might eventually be related to specific characteristics of strains, tissue tropism and host responses.</p> <p>Methods</p> <p>To study differences in disease development between HPAIV and LPAIV, we examined the first appearance and eventual load of viral RNA in multiple organs as well as host responses in brain and intestine of chickens infected with two closely related H7N1 HPAIV or LPAIV strains.</p> <p>Results</p> <p>Both H7N1 HPAIV and LPAIV spread systemically in chickens after a combined intranasal/intratracheal inoculation. In brain, large differences in viral RNA load and host gene expression were found between H7N1 HPAIV and LPAIV infected chickens. Chicken embryo brain cell culture studies revealed that both HPAIV and LPAIV could infect cultivated embryonic brain cells, but in accordance with the absence of the necessary proteases, replication of LPAIV was limited. Furthermore, TUNEL assay indicated apoptosis in brain of HPAIV infected chickens only. In intestine, where endoproteases that cleave HA of LPAIV are available, we found minimal differences in the amount of viral RNA and a large overlap in the transcriptional responses between HPAIV and LPAIV infected chickens. Interestingly, brain and ileum differed clearly in the cellular pathways that were regulated upon an AI infection.</p> <p>Conclusions</p> <p>Although both H7N1 HPAIV and LPAIV RNA was detected in a broad range of tissues beyond the respiratory and gastrointestinal tract, our observations indicate that differences in pathogenicity and mortality between HPAIV and LPAIV could originate from differences in virus replication and the resulting host responses in vital organs like the brain.</p
Comparison between DNA Detection in Trigeminal Nerve Ganglia and Serology to Detect Cattle Infected with Bovine Herpesviruses Types 1 and 5
Bovine herpesviruses (BoHVs) types 1 (BoHV-1) and 5 (BoHV-5) are alphaherpesviruses of major importance to the bovine production chain. Such viruses are capable of establishing latent infections in neuronal tissues. Infected animals tend to develop a serological response to infection; however, such response-usually investigated by antibody assays in serum-may eventually not be detected in laboratory assays. Nevertheless, serological tests such as virus neutralization (VN) and various enzyme-linked immunosorbent assays (ELISAs) are widely employed to check individual or herd status of BoHV infections. The correlation between detection of antibodies and the presence of viral nucleic acids as indicatives of infection in infected cattle has not been deeply examined. In order to investigate such correlation, 248 bovine serum samples were tested by VN to BoHV-1 and BoHV-5, as well as in a widely employed (though not type-differential) gB ELISA (IDEXX IBR gB X2 Ab Test) in search for antibodies to BoHVs. Immediately after blood withdrawal, cattle were slaughtered and trigeminal ganglia (TG) excised for DNA extraction and viral nucleic acid detection (NAD) by nested PCR. Neutralizing antibodies to BoHV-1 and/or BoHV-5 were detected in 44.8% (111/248) of sera, whereas the gB ELISA detected antibodies in 51.2% (127/248) of the samples. However, genomes of either BoHV-1, BoHV-5, or both, were detected in TGs of 85.9% (213/248) of the animals. These findings reveal that the assays designed to detect antibodies to BoHV-1 and/or BoHV-5 employed here may fail to detect a significant number of latently infected animals (in this study, 35.7%). From such data, it is clear that antibody assays are poorly correlated with detection of viral genomes in BoHV-1 and BoHV-5-infected animals