3,417 research outputs found
One-pot, two-step transaminase and transketolase synthesis of L-gluco-heptulose from L-arabinose
The use of biocatalysis for the synthesis of high value added chemical building blocks derived from biomass is becoming an increasingly important application for future sustainable technologies. The synthesis of a higher value chemical from L-arabinose, the predominant monosaccharide obtained from sugar beet pulp, is demonstrated here via a transketolase and transaminase coupled reaction. Thermostable transketolases derived from Deinococcus geothermalis and Dei nococcus radiodurans catalysed the synthesis of L-gluco-heptulose from L-arabinose and β-hydroxypyruvate at elevated temperatures with high conversions. β-Hydroxypyruvate, a commercially expensive compound used in the transketolase reaction, was generated in situ from L-serine and α-ketoglutaric acid via a thermostable transaminase, also from Deinococcus geothermalis. The two steps were investigated and implemented in a one-pot system for the sustainable and efficient production of L-gluco-heptulose
A mathematical modelling study of an athlete's sprint time when towing a weighted sled
This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s12283-013-0114-2.This study used a mathematical model to examine the effects of the sled, the running surface, and the athlete on sprint time when towing a weighted sled. Simulations showed that ratio scaling is an appropriate method of normalising the weight of the sled for athletes of different body size. The relationship between sprint time and the weight of the sled was almost linear, as long as the sled was not excessively heavy. The athlete’s sprint time and rate of increase in sprint time were greater on running surfaces with a greater coefficient of friction, and on any given running surface an athlete with a greater power-to-weight ratio had a lower rate of increase in sprint time. The angle of the tow cord did not have a substantial effect on an athlete’s sprint time. This greater understanding should help coaches set the training intensity experienced by an athlete when performing a sled-towing exercise
Challenges in applying human factors approaches to health service design
A participatory systems approach is a fundamental characteristic of the human factors and ergonomics discipline. However, the appropriate application of relevant methods is challenging in healthcare, since there is very limited time for staff to participate and their knowledge on design methods is usually very limited. An action research was carried out in a health service design project commissioned by a local health service commissioner. The aim of this paper is to examine and discuss challenges in applying the participatory systems approach
Reinventing residual reserves in the sea: Are we favouring ease of establishment over need for protection?
© 2014 The Authors. As systems of marine protected areas (MPAs) expand globally, there is a risk that new MPAs will be biased toward places that are remote or unpromising for extractive activities, and hence follow the trend of terrestrial protected areas in being 'residual' to commercial uses. Such locations typically provide little protection to the species and ecosystems that are most exposed to threatening processes. There are strong political motivations to establish residual reserves that minimize costs and conflicts with users of natural resources. These motivations will likely remain in place as long as success continues to be measured in terms of area (km2) protected. The global pattern of MPAs was reviewed and appears to be residual, supported by a rapid growth of large, remote MPAs. The extent to which MPAs in Australia are residual nationally and also regionally within the Great Barrier Reef (GBR) Marine Park was also examined. Nationally, the recently announced Australian Commonwealth marine reserves were found to be strongly residual, making almost no difference to 'business as usual' for most ocean uses. Underlying this result was the imperative to minimize costs, but without the spatial constraints of explicit quantitative objectives for representing bioregions or the range of ecological features in highly protected zones. In contrast, the 2004 rezoning of the GBR was exemplary, and the potential for residual protection was limited by applying a systematic set of planning principles, such as representing a minimum percentage of finely subdivided bioregions. Nonetheless, even at this scale, protection was uneven between bioregions. Within-bioregion heterogeneity might have led to no-take zones being established in areas unsuitable for trawling with a risk that species assemblages differ between areas protected and areas left available for trawling. A simple four-step framework of questions for planners and policy makers is proposed to help reverse the emerging residual tendency of MPAs and maximize their effectiveness for conservation. This involves checks on the least-cost approach to establishing MPAs in order to avoid perverse outcomes
Modelling and optimisation of the one-pot, multi-enzymatic synthesis of chiral amino-alcohols based on microscale kinetic parameter determination
Advances in synthetic biology are facilitating the de novo design of complex, multi-step enzymatic conversions for industrial organic synthesis. This work describes the integration of multi-step enzymatic pathway construction with enzyme kinetics and bioreactor modelling, in order to optimise the synthesis of chiral amino-alcohols using engineered Escherichia coli transketolases (TK) and the Chromobacterium violaceum transaminase (TAm). The specific target products were (2S,3S)-2-aminopentane-1,3-diol (APD) and (2S,3R)-2-amino-1,3,4-butanetriol (ABT). Kinetic models and parameters for each of the enzymatic steps were first obtained using automated microwell experiments. These identified the TK-catalysed conversions as being up to 25 times faster than the subsequent TAm conversions and inhibition of TAm by the amino-donor used, (S)-(−)-α-methylbenzylamine (MBA), as limiting the overall conversion yields. In order to better ‘match’ the relative rates of the two enzymes an E. coli expression system, based on two compatible plasmids, was constructed to produce both enzymes in a single host. By control of induction time and temperature it was possible to produce six times more recombinant TAm than TK to help balance the reaction rates. To overcome MBA inhibition and an unfavourable reaction equilibrium, fed-batch addition of the amino-donor was introduced as well as the use of isopropylamine as an alternate amino-donor. Adopting these strategies, and using the kinetic models to optimise feeding strategies, the one pot syntheses of APD and ABT were successfully scaled-up to preparative scales. Excellent agreement was found between the kinetic profiles and yields predicted and those achieved experimentally at the larger scale. In this case the integration of these multi-disciplinary approaches enabled us to achieve up to a 6 fold greater yield using concentrations an order of magnitude higher than in previous preparative scale batch bioconversions carried out sequentially
Potential of sugar beet vinasse as a feedstock for biocatalyst production within an integrated biorefinery context
BACKGROUND: This work explores the feasibility of vinasse as an inexpensive feedstock for industrial biocatalyst production within the context of an integrated sugar beet biorefinery. As an exemplar, production of CV2025 ω-Transaminase (ω-TAm) in Escherichia coli BL21 was studied. RESULTS: Characterisation of vinasse showed that it comprised mainly of glycerol along with several reducing sugars, sugar alcohols, acetate, polyphenols and protein. Preliminary results showed E. coli BL21 cell growth and CV2025 ω-TAm production were feasible in cultures using 17% to 25% (v/v) vinasse with higher concentrations demonstrating inhibitory effects. The d-galactose present in vinasse facilitated auto-induction of the pQR801 plasmid enabling CV2025 ω-TAm expression without addition of expensive Isopropyl-β-d-thiogalactopyranoside (IPTG). Assessment of different vinasse pre-processing options confirmed simple dilution of the vinasse was sufficient to reduce the concentration of polyphenols to below inhibitory levels. Optimisation experiments, carried out using a controlled, 24-well microbioreactor platform, showed supplementation of diluted vinasse medium with 10 g L^{−1} yeast extract enabled enhancements of 2.8, 2.5, 5.4 and 3-fold in specific growth rate, maximum biomass concentration, CV2025 ω-TAm volumetric and specific activity, respectively. Investigation into the metabolic preferences of E. coli BL21 when grown in vinasse showed a preference for D-mannitol utilisation before simultaneous metabolism of glycerol, d-xylitol, d-dulcitol and acetate. Scale-up of optimised conditions for batch CV2025 ω-TAm production to a 7.5 L stirred tank reactor (STR) was demonstrated based on matched volumetric mass transfer coefficient (kLa). The results showed good comparability with respect to cell growth, substrate consumption and CV2025 ω-TAm production representing over a 700-fold volumetric scale translation. Further enhancements in CV2025 ω-TAm production were possible in the STR when operated at higher k_{L}a values. CONCLUSION: This work describes the promising application of vinasse for production of microbial enzymes and insights into carbon source utilisation in complex feedstocks. Exploitation of vinasse as a fermentation feedstock could be further extended to other processes involving different microorganisms and target enzymes
Ward's Hierarchical Clustering Method: Clustering Criterion and Agglomerative Algorithm
The Ward error sum of squares hierarchical clustering method has been very
widely used since its first description by Ward in a 1963 publication. It has
also been generalized in various ways. However there are different
interpretations in the literature and there are different implementations of
the Ward agglomerative algorithm in commonly used software systems, including
differing expressions of the agglomerative criterion. Our survey work and case
studies will be useful for all those involved in developing software for data
analysis using Ward's hierarchical clustering method.Comment: 20 pages, 21 citations, 4 figure
The role of chaotic resonances in the solar system
Our understanding of the Solar System has been revolutionized over the past
decade by the finding that the orbits of the planets are inherently chaotic. In
extreme cases, chaotic motions can change the relative positions of the planets
around stars, and even eject a planet from a system. Moreover, the spin axis of
a planet-Earth's spin axis regulates our seasons-may evolve chaotically, with
adverse effects on the climates of otherwise biologically interesting planets.
Some of the recently discovered extrasolar planetary systems contain multiple
planets, and it is likely that some of these are chaotic as well.Comment: 28 pages, 9 figure
Balancing the dilution and oddity effects: Decisions depend on body size
Background Grouping behaviour, common across the animal kingdom, is known to reduce an individual's risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack). Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the ‘oddity’ effect). Thus, animals should choose group mates close in appearance to themselves (eg. similar size), whilst also choosing a large group. Methodology and Principal Findings We used the Trinidadian guppy (Poecilia reticulata), a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity. Conclusions and Significance Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size relative to shoal-mates, and attractiveness as prey items influences shoaling decisions
Transmission of SARS-CoV-2 by children and young people in households and schools: a meta-analysis of population-based and contact-tracing studies
Background: The role of children and young people (CYP) in transmission of SARS-CoV-2 in household and educational settings remains unclear. We undertook a systematic review and meta-analysis of contact-tracing and population-based studies at low risk of bias. /
Methods: We searched 4 electronic databases on 28 July 2021 for contact-tracing studies and population-based studies informative about transmission of SARS-CoV-2 from 0-19 year olds in household or educational settings. We excluded studies at high risk of bias, including from under-ascertainment of asymptomatic infections. We undertook multilevel random effects meta-analyses of secondary attack rates (SAR: contact-tracing studies) and school infection prevalence, and used meta-regression to examine the impact of community SARS-CoV-2 incidence on school infection prevalence. /
Findings: 4529 abstracts were reviewed, resulting in 37 included studies (16 contact-tracing; 19 population studies; 2 mixed studies). The pooled relative transmissibility of CYP compared with adults was 0.92 (0.68, 1.26) in adjusted household studies. The pooled SAR from CYP was lower (p=0.002) in school studies 0.7% (0.2, 2.7) than household studies (7.6% (3.6, 15.9) . There was no difference in SAR from CYP to child or adult contacts. School population studies showed some evidence of clustering in classes within schools. School infection prevalence was associated with contemporary community 14-day incidence (OR 1.003 (1.001, 1.004), p<0.001). /
Interpretation: We found no difference in transmission of SARS-CoV-2 from CYP compared with adults within household settings. SAR were markedly lower in school compared with household settings, suggesting that household transmission is more important than school transmission in this pandemic. School infection prevalence was associated with community infection incidence, supporting hypotheses that school infections broadly reflect community infections. These findings are important for guiding policy decisions on shielding, vaccination school and operations during the pandemic
- …