1,500 research outputs found
Recommended from our members
Quantifying sources of methane using light alkanes in the Los Angeles basin, California
Methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), and C2-C5 alkanes were measured throughout the Los Angeles (L.A.) basin in May and June 2010. We use these data to show that the emission ratios of CH4/CO and CH4/CO2 in the L.A. basin are larger than expected from population-apportioned bottom-up state inventories, consistent with previously published work. We use experimentally determined CH4/CO and CH4/CO2 emission ratios in combination with annual State of California CO and CO2 inventories to derive a yearly emission rate of CH4 to the L.A. basin. We further use the airborne measurements to directly derive CH4 emission rates from dairy operations in Chino, and from the two largest landfills in the L.A. basin, and show these sources are accurately represented in the California Air Resources Board greenhouse gas inventory for CH4. We then use measurements of C2-C5 alkanes to quantify the relative contribution of other CH4 sources in the L.A. basin, with results differing from those of previous studies. The atmospheric data are consistent with the majority of CH4 emissions in the region coming from fugitive losses from natural gas in pipelines and urban distribution systems and/or geologic seeps, as well as landfills and dairies. The local oil and gas industry also provides a significant source of CH4 in the area. The addition of CH4 emissions from natural gas pipelines and urban distribution systems and/or geologic seeps and from the local oil and gas industry is sufficient to account for the differences between the top-down and bottom-up CH4 inventories identified in previously published work. Key PointsTop-down estimates of CH4 emissions in L.A. are greater than inventory estimatesEstimates of CH4 emissions from landfills in L.A. agree with CARB inventoryPipeline natural gas and/or seeps, and landfills are main sources of CH4 in L.A. ©2013. American Geophysical Union. All Rights Reserved
Trends in selenium status of South Australians
The document attached has been archived with permission from the editor of the Medical Journal of Australia. An external link to the publisher’s copy is included.Objective: To assess trends in selenium status in South Australians from 1977 to 2002. Design: Six cross-sectional surveys. Participants: 117 participants in 1977, 30 in 1979, 96 and 103 (separate surveys) in 1987, 200 in 1988, and 288 volunteer blood donors in 2002. A total of 834 healthy Australian adults (mean age, 42 years [range, 17–71 years]; 445 were male). Main outcome measures: Plasma and whole blood selenium concentrations. Results: The 2002 survey yielded a mean plasma selenium concentration of 103 μg/L (SE, 0.65), which reached the estimated nutritional adequacy level of 100 μg/L plasma selenium. Mean whole blood selenium declined 20% from the 1977 and 1979 surveys (mean whole blood selenium concentration, 153 μg/L) to the 1987, 1988 and 2002 surveys (mean whole blood selenium concentration, 122 μg/L). Plasma selenium was higher in men (P = 0.01), and increased with age in both men and women (P = 0.008). Conclusions: In healthy South Australian adults sampled from 1977 to 2002, whole blood and plasma selenium concentrations were above those reported for most other countries and in most previous Australian studies, notwithstanding an apparent decline in selenium status from the late 1970s to the late 1980s.Graham H Lyons, Geoffrey J Judson, James C R Stangoulis, Lyndon T Palmer, Janine A Jones and Robin D Graha
Wanted dead or alive : high diversity of macroinvertebrates associated with living and ’dead’ Posidonia oceanica matte
The Mediterranean endemic seagrass Posidonia
oceanica forms beds characterised by a dense leaf canopy
and a thick root-rhizome ‘matte’. Death of P. oceanica
shoots leads to exposure of the underlying matte, which
can persist for many years, and is termed ‘dead’ matte.
Traditionally, dead matte has been regarded as a degraded
habitat. To test whether this assumption was
true, the motile macroinvertebrates of adjacent living
(with shoots) and dead (without shoots) matte of
P. oceanica were sampled in four different plots located
at the same depth (5–6 m) in Mellieha Bay, Malta
(central Mediterranean). The total number of species
and abundance were significantly higher (ANOVA;
P<0.05 and P<0.01, respectively) in the dead matte
than in living P. oceanica matte, despite the presence of
the foliar canopy in the latter. Multivariate analysis
(MDS) clearly showed two main groups of assemblages,
corresponding to the two matte types. The amphipods
Leptocheirus guttatus and Maera grossimana, and the
polychaete Nereis rava contributed most to the dissimilarity
between the two different matte types. Several
unique properties of the dead matte contributing to the
unexpected higher number of species and abundance of
motile macroinvertebrates associated with this habitat
are discussed. The findings have important implications
for the conservation of bare P. oceanica matte, which
has been generally viewed as a habitat of low ecological
value.peer-reviewe
Neurocognitive function in children with compensated hypothyroidism: lack of short term effects on or off thyroxin
BACKGROUND: Although thyroxin therapy clearly is beneficial to children with frank hypothyroidism there is little data on the effects of thyroxin in children with compensated or subclinical hypothyroidism. The objective of this study was to determine the effect of thyroxin therapy on cognitive function in children with compensated hypothyroidism. The hypothesis was that thyroxin therapy would change neuropsychological function. METHODS: Eleven patients with a history of sub clinical hypothyroidism entered the study. At the start of the study, six out of the 11 were on thyroxin therapy, while 5 were off therapy. All patients underwent a battery of neuropsychological testing and thyroid function tests at the start of study. Based on the results of thyroid function tests, two of the 5 patients who were off thyroxin were started back on thyroxin. All of the 6 patients who were on thyroxin were taken off thyroxin. All patients then underwent repeat neuropsychological testing and thyroid functions after an average of 91 days. RESULTS: Thyroxin therapy could not be shown to have an effect on neuropsychological function in this short term study. Our patients had attention problems as compared to the normal population. No significant differences were found between our subjects and normal population standards in verbal processing, visual processing, motor speed/coordination and achievement. CONCLUSION: In this small, short term study, thyroxin therapy could not be shown to affect neuropsychological function in children with compensated hypothyroidism. These children may have attention problems but appear to have normal verbal and visual processing, motor speed/coordination and achievement
A Molecular and Co-Evolutionary Context for Grazer Induced Toxin Production in Alexandrium tamarense
Marine dinoflagellates of the genus Alexandrium are the proximal source of neurotoxins associated with Paralytic Shellfish Poisoning. The production of these toxins, the toxin biosynthesis and, thus, the cellular toxicity can be influenced by abiotic and biotic factors. There is, however, a lack of substantial evidence concerning the toxins' ecological function such as grazing defense. Waterborne cues from copepods have been previously found to induce a species-specific increase in toxin content in Alexandrium minutum. However, it remains speculative in which context these species-specific responses evolved and if it occurs in other Alexandrium species as well. In this study we exposed Alexandrium tamarense to three copepod species (Calanus helgolandicus, Acartia clausii, and Oithona similis) and their corresponding cues. We show that the species-specific response towards copepod-cues is not restricted to one Alexandrium species and that co-evolutionary processes might be involved in these responses, thus giving additional evidence for the defensive role of phycotoxins. Through a functional genomic approach we gained insights into the underlying molecular processes which could trigger the different outcomes of these species-specific responses and consequently lead to increased toxin content in Alexandrium tamarense. We propose that the regulation of serine/threonine kinase signaling pathways has a major influence in directing the external stimuli i.e. copepod-cues, into different intracellular cascades and networks in A. tamarense. Our results show that A. tamarense can sense potential predating copepods and respond to the received information by increasing its toxin production. Furthermore, we demonstrate how a functional genomic approach can be used to investigate species interactions within the plankton community
Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict
Horizontal DNA transfer (HDT) is a pervasive mechanism of diversification in many microbial species, but its primary evolutionary role remains controversial. Much recent research has emphasised the adaptive benefit of acquiring novel DNA, but here we argue instead that intragenomic conflict provides a coherent framework for understanding the evolutionary origins of HDT. To test this hypothesis, we developed a mathematical model of a clonally descended bacterial population undergoing HDT through transmission of mobile genetic elements (MGEs) and genetic transformation. Including the known bias of transformation toward the acquisition of shorter alleles into the model suggested it could be an effective means of counteracting the spread of MGEs. Both constitutive and transient competence for transformation were found to provide an effective defence against parasitic MGEs; transient competence could also be effective at permitting the selective spread of MGEs conferring a benefit on their host bacterium. The coordination of transient competence with cell-cell killing, observed in multiple species, was found to result in synergistic blocking of MGE transmission through releasing genomic DNA for homologous recombination while simultaneously reducing horizontal MGE spread by lowering the local cell density. To evaluate the feasibility of the functions suggested by the modelling analysis, we analysed genomic data from longitudinal sampling of individuals carrying Streptococcus pneumoniae. This revealed the frequent within-host coexistence of clonally descended cells that differed in their MGE infection status, a necessary condition for the proposed mechanism to operate. Additionally, we found multiple examples of MGEs inhibiting transformation through integrative disruption of genes encoding the competence machinery across many species, providing evidence of an ongoing "arms race." Reduced rates of transformation have also been observed in cells infected by MGEs that reduce the concentration of extracellular DNA through secretion of DNases. Simulations predicted that either mechanism of limiting transformation would benefit individual MGEs, but also that this tactic's effectiveness was limited by competition with other MGEs coinfecting the same cell. A further observed behaviour we hypothesised to reduce elimination by transformation was MGE activation when cells become competent. Our model predicted that this response was effective at counteracting transformation independently of competing MGEs. Therefore, this framework is able to explain both common properties of MGEs, and the seemingly paradoxical bacterial behaviours of transformation and cell-cell killing within clonally related populations, as the consequences of intragenomic conflict between self-replicating chromosomes and parasitic MGEs. The antagonistic nature of the different mechanisms of HDT over short timescales means their contribution to bacterial evolution is likely to be substantially greater than previously appreciated
Femoral revision knee Arthroplasty with Metaphyseal sleeves: the use of a stem is not mandatory of a structural point of view
Purpose
Metaphyseal sleeves are an option for patients with severe metaphyseal bony defects requiring TKA revision. Although sleeves are usually used with stems, little is known about the exact contribution/need of the stem for the initial sleeve-bone interface stability, particularly in the femur, if the intramedullary canal is deformed or bowed. It is hypothesised that diaphyseal-stem addition increases the sleeve-femur interface stability and the strain-shielding effect on the metaphyseal femur relatively to the stemless condition.
Material and methods
Synthetic-femur was used to measure cortex strain behaviour and implant cortex micromotions for three techniques: only femoral-component, stemless-sleeve and stemmed-sleeve. Paired t-tests were performed to evaluate the statistical significance of the difference between mean principal strains and implant-cortex micromotions. Finite-element models were developed to assess the cancellous-bone strain behaviour and sleeve-bone interface micromotions; these models were validated against the measurements.
Results
Cortex strains are reduced significantly (p<0.05) in 83% of strain gauges on stemmed-sleeve, which compares with 33% in stemless condition. Both techniques presented a cancellous bone strain reduction of 50% at the distal region and an increase of nearly four times at the sleeve proximal region relative to the model only with the femoral component. Both techniques presented sleeve-bone micromotions amplitude below 50-150μm, suitable for bone ingrowth.
Conclusions
The use of a supplemental diaphyseal-stem potentiates the risk of cortex bone resorption compared with the stemless-sleeve condition; however, the stem is not vital for increasing the initial sleeve-bone stability and has a minor effect on the cancellous-bone strain behaviour. Of a purely structural point view, appears that the use of a diaphyseal-femoral-stem with the metaphyseal sleeve is not mandatory in the revision TKA which is particularly relevant in cases where the use of stems is impracticable.publishe
Discontinuation of thyroid hormone treatment among children in the United States with congenital hypothyroidism: findings from health insurance claims data
<p>Abstract</p> <p>Background</p> <p>Thyroid hormone treatment in children with congenital hypothyroidism can prevent intellectual disability. Guidelines recommend that children diagnosed with congenital hypothyroidism through newborn screening remain on treatment to at least 3 years of age, after which a trial off therapy can determine which children have transient hypothyroidism. The purpose of this study was to describe the rate at which children with congenital hypothyroidism in the United States discontinue thyroid hormone treatment in early childhood.</p> <p>Methods</p> <p>Retrospective analysis of the 2002-2006 MarketScan<sup>® </sup>Commercial Claims and Encounters research databases and the 2001-2005 MarketScan Multi-State Medicaid databases. Children were classified as having congenital hypothyroidism based on billing codes and having filled a prescription for thyroid hormone treatment. Kaplan-Meier curve analysis was used to determine discontinuation rates.</p> <p>Results</p> <p>There were a total of 412 Medicaid-enrolled children and 292 privately-insured children with presumed congenital hypothyroidism included in this study. The overall birth prevalence of congenital hypothyroidism across both datasets was about 1 per 2,300. By 36 months, the percentage who had discontinued thyroid replacement treatment was 38% (95% Confidence Interval: 32%-44%). Medicaid-enrolled children had a more rapid decline in the first 24 months of treatment compared to those with private insurance (<it>P </it>= 0.02).</p> <p>Conclusions</p> <p>More than one-third of children treated for congenital hypothyroidism discontinued treatment within 36 months, which is inconsistent with current guidelines. It is not known how many of these children required continued treatment or experience adverse effects from discontinuation. These findings emphasize the critical need for follow-up systems to monitor the outcome of newborn screening.</p
Algal Toxins Alter Copepod Feeding Behavior
Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod’s feeding appendages–a “sampling beating” that has short durations (<100 ms) and involves little fluid entrainment and a longer duration “grazing beating” that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod’s grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod’s feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods
- …